
~

ANTHONY
M IEAD ow

I

System 7 Revealed

System 7 Revealed

Anthony Meadow

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison-Wesley
was aware of a trademark claim, the designations have been printed in initial capital letters.

Meadow, Anthony.
System 7 revealed / Anthony Meadow.

p. em. - (Macintosh inside out)
Includes index.
ISBN 0-201-55040-7
1. Operating systems (Computers) 2. System 7.

ming. I. Title. II. Title: System seven revealed.
QA76.76.063M43 1991

005.265-dc20

Copyright © 1991 by Bear River Associates, Inc.

3. Macintosh (Computer)-Program
lll. Series.

91-9681
CIP

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys
tem, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Sponsoring Editor: Carole McClendon
Technical Reviewer: Steve Goldberg
Cover Design: Ronn Campisi Design
Set in 10.5-point Palatine by Shepard Poorman Communications Corporation

2 3 4 56 7 8 9 10 - MW- 94939291
Second printing, July 1991

To Diana

Contents

Foreword by Scott Knaster xix

Acknowledgments xxi

Introduction xxiii
Why This Book? xxiii

An Overview of System 7 xxiv
Hands-on Outlines for Coding xxiv
A Guide for Future Reference xxiv

The Framework xxiv
A Brief Word on Terminology xxvii
Important Concepts of the Macintosh Operating System xxviii

MemonJ Management in the Macintosh Operating System xxviii
Resources xxix
QuickDraw xxxi
Events xxxii

Technical Documentation on the Macintosh Operating
System xxxiii
Inside Macintosh xxxiv
Technical Notes xxxiv
Apple Technical LibranJ xxxiv
APDA Documents and Software xxxv

Conclusion xxxv

1. Overview of System 7 1
Introduction 1
The Strategy behind System 7 1
The History of System 7 3

VII

viii Contents

2.

The Components of System 7 3
The Finder 4
The Huma11 Interface 4
The Installer 5
Interapplication Communications and High-Level Events 5
The Edition Manager 6
TrueType and Fonts 6
TextEdit and International Services 7
The Data Access Manager 7
The Help Manager 8
The Sound Manager 9
The Conununications Toolbox 9
AppleTalk and File Sharing 9
QuickDraw 10
The Memory Manager and Virtual Memory 11
Processes 11
The File System 12
The Hardware Managers 13

Running System 7 14
Memon; Requirements 14
Virtual Memory Requirements 14

Conclusion 15

The Finder 17
Introduction 17
The Menu 17

The Apple Menu 18
The File Menu 18
The Edit Menu 18
The View Menu 19
The Label Me1111 19
The Special Menu 20
Application Menu 20
Script Me11u 21
Help Menu 21

The System Folder 21
The New System Folder 21
FontjDA Mover 22

Aliases 23
File Sharing 24
Desktop Objects 26

Navigati11g the Desktop 26
Stationery Pads 27

The Trash 27
Virtual Memory 27
Conclusion 28

3. The Human Interface Guidelines 29
Introduction 29
Color and Interface Design 29

Guidelines for Using Color i11 the Interface 30
Icons 30
New Kinds of Icons 31

Menus and Interface Design 32
New Standard Menu Commands 32
Pop-up Menus 32

Windows and Interface Design 33
Dialog Boxes and Interface Design 33

Movable Modal Dialog Boxes 34
Keyboard Navigation i11 Dialog Boxes 35

IJil> Contents lx

Changes to tile Macintosh Human Interface Guidelines 35
Conclusion 36

4. The Installer 37
Introduction 37
Using the Installer 39
What the Installer is Really Doing 39

Developing an Installer Script 39
The Organization of an Installer Script 40
Installer Resources 42

The 'inrl' (Rule) Resource 42
The 'infr' (Rule Framework) Resource 44
Assertions 44
The 'inpk' (Package) Resource 44
The 'infa' (File Atom) Resource 45
The 'inra' (Resource Atom) Resource 45
The 'inaa' (Action Atom) Resource 46
The 'inat' (Audit Atom) Resource 46
The 'inbb' (Boot Block Atom) Resource 47
The 'icmt' (Installer Comment) Resource 47
The 'infs' (File Specification) Resource 47
The 'indo' (Disk Order) Resource 48

Customizing the Installer 48
Creating a Splash Screen 48

When to Use the Installer 48
Conclusion 49

X ... Contents

5. Compatibility 51
Introduction 51
The Gestalt Manager 52

Calling Gestalt 52
Modift;ing the Gestalt Manager 55
Selector Functions 56

Running under A/UX 56
Availability of the Macintosh Operating System under AjUX 57
Programming Techniques for AjUX Compatibility 59

System 7-Aware Applications 59
Conclusion 61

6. The PPC Toolbox, High-Level Events, and Apple Events 63
Introduction 63
The PPC Toolbox 63

PPC Terminology 64
Naming PCC Ports 64
When to Use the PPC Toolbox, When to Use Apple Events 65
Compatibility and the PPC Toolbox 65
Managing PPC Services 65
Calling the PPC Toolbox 66
An Example of Using the PPC Toolbox 69

Using High-Level Events 71
Types of Events 71
Low-Level Events 71
Operating-System Events 72
High-Level Events 73
Describing High-Level Events 73
Calling High-Level Event Martager Routines 74
The 'SIZE' Resource 75

Apple Events 76
Compatibility and Apple Events 77
Important Data Structures of tlze Apple Event Manager 77
Using Apple Event Dispatch Tables 80
Extracting Data from an Apple Event 81
Sending an Apple Event 82

Where Are We Headed? 84
Conclusion 85

7. The Edition Manager 87
Introduction 87
The User's View of Publishing and Subscribing 88

Displaying Publishers and Subscribers 92

~ Contents xi

Changes to the Edit Menu 92
Supporting the Edition Manager from Various Types of

Applications 93
The Edition File 94
Saving Documents That Contain Sections 94

Using the Edition Manager 94
Compatibility and the Edition Manager 95
Starting the Edition Manager 95
The Section Record 95
Working with Section Records 95
Creating a Publisher 96
Creating a Subscriber 97
Format Marks 98
Subscribing to Files Rather Than Editions 99
Apple Events and the Edition Manager 99
Implementing Edition Manager Support 100

Conclusion 100

8. Fonts and True Type 103
Introduction 103
Macintosh Fonts: Then and Now 103

The First Fonts: 'FONT Resources 104
PostScript Arrives 105
New Font Resources: 'NFNT Resources 107
TrueType Emerges 108
The PostScript Controversy 110

TrueType Font Technology 110
Taking Full Advantage of TrueType 115

Using the Font Manager 115
How the Font Manager Chooses a Font 115
Compatibility and the Font Manager 116
Using the New Font Manager Calls 116

Conclusion 118

9. TextEdit and International Services 121
Introduction 121
Why the Script Manager? 121
Improvements in TextEdit 122

Compatibility and TextEdit 123
Script Manager Support in TextEdit 123
Using the New TextEdit Routines 124

Improvements in the Script Manager 128
Using the Script Manager 132

XII ~ Contents

Compatibilitt; and the Script Manager 136
Improvements to International Features 136

The International Utilities Package 136
The International Resources 137
The 'itlc' Resource 138
The 'itlb' Resource 138
The 'itlm' Resource 139
The 'it/0' Resource 139
The 'it/1' Resource 139
The 'it/2' Resource 140
The 'itl4' Resource 140
The 'KCHR' Resource 141
The 'kcs#', 'kcs4', and 'kcsB' Resources 141
The 'KCAP' Resource 141
The 'KSWP' Resource 142
The 'itlk' Resource 142

Writing International Software 142
Conclusion 143

10. The Data Access Manager and the Data Access Language 145
Introduction 145
Why the Data Access Language? 146
The Architecture of the Data Access Manager 148

Queries and the Data Access Manager 150
What Do You Need to Run DAL? 150

The Data Access Language 151
Aspects of Using DAL 154
Securitt; Considerations 156
Examples of Data Access Language 157

When to Use DAL and When to Use a DBMS Directly 158
The Future of the Data Access Language 160
Using the Data Access Manager 160

Compatibility and the Data Access Manager 161
Quen; Documents 161
Using tile High-Level Calls to the Data Access Ma nager 162
Using the Low-Level Calls to the Data Access Manager 163
Using Result Handlers 164
Usi11g the Low-Level Utility Calls 165
Human Interface Guidelines and the Data Access Manager 166

Conclusion 167

11. The Help Manager 169
Introduction 169
Amount of Help versus Amount of Work 171

Compatibility Considerations 172
Internationalization Considerations 172
Hot Rectangles! 172
Help, the State, and Help Messages 173
Help Resources 17 4

The 'hmnu' Resource 175
The 'hdlg' Resource 176
The 'hrct' Resource 177
The 'hwin' Resource 178
The 'hfdr Resource 179
The 'hovr Resource 179

.,.. Contents xlll

Creating Help Resources for Standard Menus 180
Creating Help Resources for Modal Dialogs 181
Creating Help Resources for Modeless Dialogs and Windows 181
Creating Help Resources for Custom Menus 182
Creating Help Resources for Movable Window Objects 183
Using the Help Manager Routines 183
Example: Creating an 'hmnu' Resource 184
Writing Help Messages 185
Conclusion 186

12. The Sound Manager 18 7
Introduction 187
Different Ways to Produce Sounds 188
Sound Data Structures 189

Sound Resources 189
Sound Files 189

Calling the Sound Manager at a High Level 190
Calling SysBeep 190
Producing Sounds the Easy Way with SndPlay 191
Using SndStartFilePlay to Play Sounds 011 Disk 191

Architecture of the Sound Manager 191
Applications and Sound Channels 192
Modifiers 193
Synthesizers and 'snth' Resources 193
Sound Hardware 195

Limitations 195
Sound Commands 196
Calling the Sound Manager at a Low Level 198

Managing Channels 198
SndDoCommand and SndDoimmediate 198
Playing Notes and Installing Instruments 199
Playing Sampled Sounds 199

xiv ..,. Contents

Playing Sampled Sounds from Disk 199
Managing Sound Channels 200
Managing Channel Capacity 200
Compressing and Expanding Sound 201
Compatibility and the Sound Manager 201
Getting Sound Status Information 202
Installing Modifiers 203

Recording Sounds 203
Sound Input and Its Implications 203
Sound Input Devices 204
Using th e Higlz-Level Interface to Record Sounds 205
Using the Low-Level Interface to Record Sounds 206

Conclusion 207

13. The Communications Toolbox 209
Introduction 209
The Architecture of the Communications Toolbox 209

Data Structures 211
The Communications Toolbox in the Larger Picture 212

Compatibility and the Communications Toolbox 212
Programming with the Connection Manager 213

The Connection Record 215
Using the Connection Manager Routines 215
Preparing to Use a Connection 216
Opening, Managing, and Closing Connections 217
Reading, Writing, and Searching over a Connection 218
Handling Events with the Connection Manager Routines 218
Other Connection Manager Routines 219
In ternationalization and the Connection Manager 219

Writing a Connection Tool 219
Creating a 'cdef Resource 221
Creating a 'cval' Resource 223
Creating a 'cset' Resource 223
Creating a 'cscr' Resource 223
Creating a 'cloc' Resource 224
Creating a 'cbnd' Resource 224

Programming with the Terminal Manager 224
The Terminal Record 227
Using the Terminal Manager Routines 228
Preparing to Emulate a Terminal 228
Emulating a Terminal 229
Working with Special Keys 230

..,. Contents xv

Handling Events with the Terminal Manager Routines 230
Other Terminal Manager Routines 230
Internationalization and the Terminal Manager 231

Writing a Terminal (Emulation) Tool 231
Creating a 'tdef Resource 232

Programming with the File Transfer Manager 234
The File Transfer Record 235
Using the File Transfer Manager Routines 236
Preparing to Transfer a File 236
Performing the File Transfer 237
Handling Events with the File Transfer Manager Routines 237
Other File Transfer Manager Routines 238
Internationalization and the File Transfer Manager 238

Writing a File Transfer Tool 238
Creating an 'fdef Resource 239

Programming with the Communications Resource Manager 240
Programming with the Communications Toolbox Utilities 241
Conclusion 242

14. AppleTalk Phase IT and AppleShare 245
Introduction 245
AppleTalk Protocols and Drivers 246

Protocols of Interest to Application Programmers 248
AppleTalk Phase II 248

AppleTalk Phase II Features for Application Developers 249
Improvements in the AppleTalk Transaction Protocol 250
Improvements to the Zone Information Protocol 250
The AppleTalk Transition Queue 250
Using the AppleTalk Transition Queue 251
Obtaining Current Node Information Using the .MPP Driver 252
Wildcard Characters for the Name Binding Protocol 252
Compatibility and AppleTalk 253

AppleTalk Data Stream Protocol 253
Using the ADSP-Important Data Structures 253
The ADSP Calls 254
Using the ADSP Calls 255
The ADSP Calls for a Connection Listener 256

File Sharing 25 7
Conclusion 259

15. QuickDraw 261
Introduction 261
Some Background on QuickDraw 261

xvi Contents

32-bit QuickDraw 262
Direct Color Devices 262
Indexed Color Devices 263
Improvements in 32-bit QuickDraw 263
Support for Direct Color in PixMaps 263
Support for Direct Color in the PICT2 Format 265
Using New QuickDraw Calls 267
Improved Gray-Scale Support 268
Telling QuickDraw That You've Been Fiddling 268

The Color Picker Package 269
Converting between Color Models 270

The Palette Manager 270
Types of Colors 270
Creating and Using 'pitt' (Palette) Resources 271
Using Palettes with Windows 272
Working with Palettes 273
Animating Palettes 273

The Graphics Device Manager 274
Creating GWorlds 274
Using GDevice Records 275

The Picture Utilities Package 277
Examining PICT Files 277
Examining Pixel Maps 278
Customizing the Picture Utilities 279

Conclusion 279

16. The Memory Manager 281
Introduction 281
Virtual Memory 281

Compatibility and Virtual MemonJ 283
Controlling Virtual Memory 284
So Who Does Have to WomJ about Virtual Memonj? 285

Temporary Memory 286
Differences in Temporary MemonJ: Now and Then 287
Compatibility and Temporary MemonJ 287
Temporary Memory Calls 287

32-Bit Cleanliness 289
WDEFs, CDEFs, and Cleanliness 291
Calculations on Memory Addresses 291
Passing Along the AS World 292
Compatibility and 32-Bit Cleanliness 292

Conclusion 292

17. Processes 295
Introduction 295
The Process Ma nager 296

Process Serial Numbers 296
Process Scheduling and Switch ing 296
Launching Applications 298
Launching Desk Accessories 299

.,.. Contents xvii

Getting Information about Other Processes 299
Compatibility and the Process Manager 301

The Notification Manager 301
Using the Notification Manager 302

The Time Manager 302
Accuracy of the Time Manager 303
Fixed-Frequen cy Scheduling 304
Time Manager Tasks 304
Compatibil ity and the Time Manager 304
Creating and Usilrg Time Manager Tasks 305
Measuring Time Intervals 305

Conclusion 306

18. The File System 307
Introduction 307
Compatibility and the File and Alias Managers 308
File IDs 308

Wo rking with File IDs 309
FSSpec Records 310
Searching for Files 310
Other Changes to the File Manager 311

Compatibility a11d the File Manager 313
Changes to the Resource Manager 313
Aliases 313

Alias Records, Canon ical File Specifications 314
Calli1zg th e Alias Manager 315

The Standard File Package 316
Compatibility a11d the Standard File Package 31 9

Finder Information and the Desktop Database 319
System Calls to Access the Desktop Database 320
New leon Types Supported by the Finder 321
Document String Reso urces Supported by the Finder 321

Architecture of the System Folder 322
Locati11g tile Preferences and Temporary Folders 323

Conclusion 324

xvlii Contents

19. The Hardware Managers 325
Introduction 325
The Slot Manager 325

Slot Manager and the In itialization Process 326
Compatibility a11d the Slot Manager 327
New Slot Manager Routines 327

The Power Manager 327
Conclusion 329

20. Object-Oriented Programming and System 7 331
Introduction 331
Object-Oriented Programming 331
What Is MacApp? 334
But What about Performance and Memory? 335
When to Use MacApp 336
When Not to Use MacApp 336
Resources for MacApp Programmers 337
Conclusion 338

21. The Future 339
Introduction 339
Some Future Features 339

New Print Architecture 340
File System Manager 340
Layout Manager 340
Revised SCSI Manager 340

Definite Futures 341
AppleScript 341
Apple Event Object Model 341
Memory Protection and Multiple Address Spaces 341
Preemptive Multitasking 341
Multimedia Support 342
Network Booting 342

Indefinite Futures 342
Revised QuickDraw 343
Object-Orien.ted Programming 343

Conclusion 343

Index 345

Foreword by Scott Knaster

The creation of Macintosh System 7.0 was the largest software effort ever
undertaken by the good folks at Apple. Scores of software engineers
invested hundreds of person-years and untold megagallons of Jolt Cola to
get the thing written; dozens of quality engineers made sure it all worked;
flocks of product managers got the world ready for it; myriads of other
Apple people of all types did what they did; handfuls of writers wrote
about it; and now, zillions of developers get to make great applications
out of it. The mind reels.

What does it all mean? Part of the System 7 effort was writing stuff to
help interested people find out why System 7 is important to them. The
most important technical documentation that comes from Apple is Inside
Maci11tosh Part 6: Freddy Krueger Burns th e ROM. Whoops, make that
l11 side Macintosh, Volume VI, of course, the definitive reference for how to
use Macintosh system software. Thus it has ever been, as ever it shall be.

Inside Macintosh, Volume VI does a wonderful job of giving you all the
details of how to use the new Toolbox Managers and system calls. The
software is so complex, though, that there's room for more than one kind
of presentation of this s tuff. In this book, Tony Meadow gives you a very
different view from the one presented in Inside Macintosh.

Instead of explaining every call in great detail, Tony introduces you to
each lovely part of System 7 and te lls you lots about it. His gentle descrip
tions of each Toolbox Manager inform you about what that Manager
does, why it was created, how you might take advantage of it, and what
lies in store for your users when you do. Tony is enthusiastic about Sys
tem 7's riches because he's a developer and he understands that it's a nice

xlx

XX Foreword

present from Apple, but he's also realis tic in letting you know what might
get you into trouble (watch out for that low ceiling ahead!).

After reading thjs book, you should be System 7-savvy and all ready to
dive into writing your appUcation with Inside Macintosh by your side.
Have a good time as you utilize all the hard work by all those good Apple
citizens, and take good advantage of the insights that Tony presents in
tills book.

Scott Knaster
Ma cintosh Inside Out Series Erutor

Acknowledgments

Many people helped make this book possible. First, I'd like to thank the
programmers, testers, writers, the product marketing team, the managers,
the many people who spoke at the 1989 and 1990 Apple Worldwide
Developers Conferences and all the other fo lks at Apple who have been
working on System 7. You did good- it's great stuff!

Quite a few people a t Apple helped make this book possible, including
Steve Goldberg, Charlie Oppenheimer, Michael Wallace, Sharon Everson
and the Tech Pubs group, Diana Mason, Martha Steffen, Bobby Carp,
Phil Goldman, Jon Magill, Chris Derossi, Gregg Williams, Steve Friedrich,
and the MacApp team

Carole McClendon, Joanne Clapp Fullagar, and Rachel Guichard in the
Berkeley Addison-Wesley office got me to write this book, developed it,
and handled all the details, respectively. Thanks for all your help. Tanya
Kucak did a splendid job of copy editing. Mary Cavaliere and the produc
tion team and Abby Cooper on the East coast produced the book and got
it to market. Thank you .

Thanks to the gang at Bear River Associates and Bear River Institute
who helped by giving me some time during the day to work on the book
and some feedback: Randy Matamoros, Dave Richey, Steve Evangelou,
Mark Hall, John Wilkinson, Sharon Ryals, Ant Bonet, and Robin Belkin.

Scott Knaster suggested the idea of this book. Dave Wilson and Paul
Hoffman were very encouraging when I started this project. Michael Wal
lace, Michael Peirce, and Jeff Cherniss took over the MacSEF grou p from
me, allowing me more time for this book. Jim Von Ehr and Tom Irby, both
from Altsys, graciously provided the illustrations in the TrueType chapter.
Thank you.

xxi

XXII Acknowledgments

Thanks also to Mark Davis (Apple}, Jim Von Ehr (Altsys), and Jim
Stoneham (Apple) for reviewing parts of the book. I'd especially like to
thank Steve Goldberg (Apple), Yogen Dalal (Claris), and Art Schumer
(Microsoft) for reviewing the entire book. Any remaining errors are, of
course, my fault.

Last, I'd like to thank Diana, Jeremy, and even Erica for the many eve
nings and weekends that allowed me to write this book.

Introduction

System 7 is the biggest change in the Macintosh since this family of com
puters was first introduced in 1984. Apple's technical documentation on
System 7 as presented in Inside Macintosh, Volume VI, is approximately
1700 pages, and not all of System 7 is documented there. Important Sys
tem 7 subjects, such as the Communications Toolbox Manager, the Data
Access Language, the TrueType font format, and the one-button Installer
are described in separate pieces of documentation. If you added up all the
documentation on all the components of System 7, you'd be looking at
almost 2500 pages .

..,_ Why This Book?

This book is oriented primarily to Macintosh programmers who want to
learn System 7. I assume that you have prior knowledge of the Macintosh
operating system, and that you are now confronting the task of under
standing just what System 7 is. This job isn't for the faint of heart.

Network managers, system administrators, and programmers from plat
forms other than the Macintosh will also find useful information in this
book. For those readers, the Introduction presents a brief overview of Macin
tosh terms and concepts. The concepts that form the basis of each portion of
the operating system are discussed in that chapter. For the most part, all you
need to understand these concepts is a basic understanding of operating
systems and familiarity with at least one programming language.

In these pages, you will find what you need to understand System 7
and to begin programming with it. Here is what you will find.

xxlii

xxiv Introduction

.,.. An Overview of System 7

This book includes a clear and succinct overview and summary of each
new aspect of the Macintosh operating system, which will give you a
snapshot of System 7 as a whole. When you have understood what all of
the components are, you will be ready to move on to Inside Macintosh,
Volume VI, for more detail. The biggest problem in understanding System
7 is that there is no grand new architecture. For a start, Apple has
improved many of the existing portions of the operating system. Apple
has then gone on to redefine what is system software and what is applica
tion software. By radically raising the level of what belongs to system
software, it is gaining an edge over other system vendors. Examples of
this new level of system software include high-level toolkits, such as the
Data Access Manager and the Communications Toolkit.

.,.. Hands-on Outlines for Coding

Beyond explaining each aspect of System 7, this book provides outlines
that should serve you when you need to accomplish a specific task using
that portion of the operating system. Each outline explains which system
calls to use and the order in which to use them. For specific code exam
ples, look at Volume VI of Inside Macin tosh. Unlike previous volumes,
there are many examples in it. The Developer Technical Support group at
Apple will also release additional examples that will be widely available .

.,.. A Guide for Future Reference

After reading this book, you will have a good understanding of System 7
and, in particular, you'll have seen the important new system calls. Later,
when you begin adding support for System 7 features into your own appli
cation and using Apple documentation, you can use this book as a roadmap.
Each chapter ends \vith a section ti tled "Get Info," where you can look for
references to the documentation on that aspect of the operating system.
Remember that not all of System 7 is described in Inside Macintosh .

.,... The Framework

Each chapter describes the changes to one aspect of the Macintosh operat
ing system. The chapters progress from those aspects of System 7 that are
most visible to users to those that are the least visible. Not everything fits
smoothly into this progression, but it does give you an idea where to look.

Chapter 1, "Overview of System 7," reviews the history of and Apple's
strategy behind System 7. You'll also read succinct descriptions of each

.,.. Introduction xxv

new (or changed) component of the operating system. The chapter also
describes the requirements for running System 7.

Chapter 2, "The Finder," explains how the behavior of the Finder has
changed. Remarkably, the Finder h as been completely rewritten for Sys
tem 7 and implements an improved interface, but it still looks much like
earlier versions of the Finder.

Chapter 3, "The Human Interface Guidelines/' provides you with a
description of how the Macintosh human interface guidelines have
evolved. Some of the new features have a significant impact on the user
interface, and Apple has been working hard to provide some guidance on
what works best.

Chapter 4, "The Installer," explains the new one-button Installer. lf
your software package requires a variety of files and resources to be
installed in a varie ty of locations, consider using the new Installer. This
version of the Installer uses rules tha t you provide to simplify the installa
tion of complex packages.

Chapter 5, " Compatibility/' provides you with an overview of how to
write software that will remain compatible with new versions of the oper
ating system and with other environments such as A/UX, Apple's version
of the UNIX operating system. You' ll also learn about the Gestalt call,
which provides your applications with a s tandard and safe way to get the
parameters of the operating system, such as which version of QuickDraw
is running.

Chapter 6, "The PPC Toolbox, High-Level Events, and Apple Events,"
explains the interapplication communications facilities of the Macintosh
operating system. These are new with System 7 and will provide some
exciting new possibilities for providing more features in applica tions
without having to write a ll the code.

Chapter 7, " The Edi tion Manager," explains a new mechanism for
sharing data between applications. Similar to cut and paste, the Edition
Manager provides powerful new features. Once the user has subscribed
to an edition, the Edition Manager ensures that the latest version of the
edition is used whenever the user edits or prints the document.

Chapter 8, "Fonts and TrueType/' gives you an overview of the new
TrueType font architecture. It provides high-quality outline fonts that can
be used both on the screen and in printing, improving the correspondence
between screen and paper. Applications don ' t have to do much to use
TrueType, but the new Font Manager calls that go along with it are
explained.

Chapter 9, "TextEdit and International Services," describes the
improvements made to TextEdit, which provides the basic text-editing
facilities in the opera ting system. You' ll also read about the improvements
to the Script Manager and the Interna tional Utilities Package, which

xxvi Introduction

together make it easy for your applications to be used in other languages
around the world.

Chapter 10, "The Data Access Manager and the Data Access Lan
guage," outlines the Data Access Manager. This new manager provides a
generic programming interface to database management systems and
databases. In System 7, it is accompanied by the Data Access Language,
which provides a powerful programming language encompassing an
SQL-like set of commands for accessing data in relational database man
agement systems.

Chapter 11, " The Help Manager," introduces this new system-level
help facility. For the most part, you can provide help for users of your
applications by simply adding some resources to the application file. In
some cases, you may have to write a small amount of code to support this
help feature.

Chapter 12, "The Sound Manager," presents the changes made to the
Sound Manager. This latest version makes it easier to support multiple
sound channels and play sounds from disk. The Sound Manager also
provides a new set of routines for recording sounds.

Chapter 13, "The Communications Toolbox," details this new toolbox,
which provides a standard programming interface for three basic commu
nications functions: connection management, terminal emulation, and file
transfer.

Chapter 14, "AppleTalk Phase II and AppleShare," reviews AppleTalk
Phase II, which becomes a standard part of the operating system with this
release. The most important aspect for application programmers is that
the Apple Talk Data Stream Protocol is part of the standard operating sys
tem. This protocol is easy to use and provides almost all the features that
application programmers (as opposed to system-level programmers)
require for supporting multiuser applications. File Sharing is also
described. This software provides a subset of the AppleShare file server
software usable by any System 7 user.

Chapter 15, "QuickDraw," describes 32-bit QuickDraw, the latest ver
sion of QuickDraw, which also becomes a standard part of the operating
system with System 7. The new version provides support for 32-bit direct
color devices and performance improvements in general.

Chapter 16, "The Memory Manager," provides details on two changes
in the Memory Manager: virtual memory and temporary memory. Virtual
memory allows a user to substitute disk space for more expensive RAM,
which enables users to run more applications at a time than would other
wise be possible. It does not, for the most part, directly affect any applica
tions. Temporary memory, the unallocated memory used for launching
applications, is available for temporary use by other applications under
less restrictive conditions than before.

...,. Introduction xxvli

Chapter 17, "Processes," discusses several managers related to manag
ing processes in the operating system. The Process Manager, new with
System 7, provides routines for launching applications and desk accesso
ries, and for getting the status of any currently running process. As yet,
the Macintosh operating system does not support preemptive multitask
ing, but this manager does give an indication of where the operating sys
tem is heading. The Notification Manager, which provides notification
services for software running in the background, is discussed. The latest
version of the Time Manager, which provides time measurement services
and accurate scheduling of small tasks under its control is also described.

Chapter 18, "The File System," details the many changes that System 7
brings to the file system of the Macintosh. The major pieces are file IDs,
FSSpec records, the new PBCatSearch routine for fast searches through a
volume, aliases that allow a file to be in more than one place at a time,
improvements to the File Manager, improvements to the Standard File Pack
age, access to Finder information such as file icons and the "Get Info ... " com
ments, new Finder icons, and the new architecture of the System Folder.

Chapter 19, "The Hardware Managers," looks briefly at the Slot Man
ager and the Power Manager. The Slot Manager manages the NuBus
cards in the Macintosh II family. The Power Manager handles the electri
cal power of the Macintosh Portable, which is always on. Neither of these
managers will be of interest to most application programmers.

Chapter 20, "Object-Oriented Programming and System 7," discusses
the benefits of using object-oriented programming with Apple's MacApp
application framework. MacApp programmers are getting some of the
improvements that System 7 brings with little work. As the operating
system increases in complexity (and power), object-oriented program
ming techniques make it easier for developers to create software.

Chapter 21, "The Future," describes some of the changes that develop
ers can expect to see as the Macintosh operating system continues to
evolve. Some of these changes have been described by Apple, but others
are changes that we should expect to see in any case .

..,.. A Brief Word on Terminology
Let's pause to review basic Macintosh terminology. If you're not a Macin
tosh programmer, read this section before proceeding. If you're already a
Macintosh programmer, you are undoubtably familiar with these terms,
so you can skip this section.

The Macintosh operating system does not have a name, such as
MS-DOS or UNIX. Perhaps this is for historical reasons-Apple has tried
from the beginning to reduce the amount of jargon used in software and
manuals. Actually, you might think of the operating system as divided

xxviii Introduction

into two layers: the operating system proper and the Toolbox. Both the
operating system and the Toolbox are organized as a set of managers. Each
manager implements some functions. For example, the Memory Manager,
part of the operating system, provides a set of system calls, or routines, to
allocate and deallocate blocks of memory. (This manager provides other
functions besides these two.)

The operating system provides the usual kinds of services that most
other operating systems do, as in the following list:

• Managing memory
• Process management (yes, the Macintosh does support limited

forms of multiprocessing)
• Managing input/output devices (such as disks, keyboard, and

mouse)
• Providing file services.

Several dozen managers make up the Macintosh operating system.
The Toolbox implements the Macintosh human interface. The distinc

tion between the operating system and the Toolbox is a concept that is
rarely mentioned in Apple's technical documentation. This distinction is
not important in practice, either; few programmers worry about whether
a manager is part of the operating system or the Toolbox. In this book, the
term operating system will be used indiscriminately to mean both the oper
ating system proper and the Toolbox .

...,. Important Concepts of the Macintosh
Operating System
As mentioned earlier, the Macintosh operating system provides most of the
same kinds of services as most other operating systems (such as UNIX or
VAX/VMS). However, several concepts are quite different from other
operating systems: memory management, resources, QuickDraw, and
events .

..,. Memory Management in the Macintosh
Operating System

Every operating system controls the use of memory by software. With
most operating systems, software allocates memory by asking for a block
of a specified size from the heap. The l1eap is a chunk of memory, blocks
of which can be allocated from anywhere in the heap. This is unlike the

llJl>- Introduction xxix

stack, in which memory must be allocated starting with the next byte on
the stack. Stacks are useful when memory will be allocated in sequence
and then deallocated in the reverse order. A heap is useful when memory
must be allocated in a nonsequential manner.

If the system call to allocate memory from the heap is successful, it
re turns a pointer to the block of memory. Macintosh software can allocate
memory in this fashion, but the preferred method is to ask for a handle to
the block rather than a pointer. A handle is a pointer to a pointer.

Why use this double level of indirection? When the Macintosh operat
ing system was first released, handles provided a method for the operat
ing system to have more control over memory than if all memory were
allocated using pointers. Since the application uses only the first pointer,
the operating system is free to move the block of memory to which the
handle points. This means that if a large block of memory is requested,
but no contiguous block of that size is available, the operating system can
try to make a block of that size available by shifting handle blocks around
in memory. If sufficent blocks can be shifted, then the request for the large
block can be fulfilled.

Clearly, by encouraging software to use handle blocks, rather than
pointer blocks, the operating system has more flexibility in managing
memory. Thus, programmers don' t have to worry about memory alloca
tion as much as they would have to otherwise.

As a consequence of this memory management scheme, most appli
cations have a large number of small code segments. This allows the oper
ating system to move segments in and out of memory as the memory
requirements of the application change. Applications typically require
more memory when they start up, open a document, or print a document.

Virtual memory, available to some Macintoshes under System 7, will
not change the way applications use memory. Applications will continue
to use handles in preference to pointers, because many Macintosh sys
tems do not support virtual memory. You could write an application that
required virtual memory, but the potential market for it would be a lot
smaller .

.,... Resources

Resources are an operating system concept that started on the Macintosh.
They provide a powerful capability for separating data from code, and
more generally, providing templates for complex data structures .
Resources are easily created and manipulated in software.

A resource is a block of data identified by a resource type, which is a
4-byte code; a resource ID, which is an 16-bit integer; and, optionally, a

XXX Introduction

Key Point ..,..

name. Resources are ubiquitous in Macintosh software. For example, an
application has many 'CODE' resources; each code segment is contained
in one of these resources. The icons displayed by the Finder are each a
resource. An 'ICN#' resource contains the standard 32-bit by 32-bit black
and-white icon displayed by the Finder. Fonts and their bitmaps are
described by 'FOND', 'NFNT', and 'sfnt' resources. Cursors are described
by 'CURS' resources. Strings are described by 'STR ' resources, and a set of
sh·ings is described by an 'STR#' resource.

The operating system and Toolbox use many resources. Applications
can create their own resource types. A resource can support almost any
structure for the data contained within it. If the resource type is propri
etary, however, only applications that know about that resource type can
use them.

Resources are used throughout the Macintosh operating system. They
have had a particularly large effect in the File Manager. Files on most
operating systems are simply contiguous, finite strings of bytes. Files on
the Macintosh are like this, too. That is, the data fork of a Macintosh file is
like that, but Macintosh files have two forks. The resource fork of a Macin
tosh file contains resources. The structure of the resource fork is not espe
cially well documented because software should access the resources in a
resource fork through the routines of the Resource Manager. Note that
because Macintosh files have two forks, transferring files to other types of
machines (running MS-DOS or UNIX, for example) is a more complex
problem than if the files had only a single fork.

For the most part, application .files have little (if anything) in the
data fork. Almost all of the application resides in the resource fork.
Data files, on the other hand, are almost all data fork and very lit
tle resource fork. Note that these are generalizations.

There are several restrictions with respect to resources. First, the
resource fork cannot be shared by multiple processes. If data needs to be
shared (over a network, for example), then it must be stored in a data fork,
not a resource fork. Second, do not redefine any standard resource types.
If you are creating a new resource, make sure that the resource type does
not conflict with any of the standard resource types. Inside Macintosh and
some of the Tech Notes list the standard resource types .

Do not use the resource fork of a file as a database unless it will contain
only a small number of items (a couple of hundred or fewer). This is
because the structure of the resource fork isn 't optimized for use as a

By the Way..,.,

.,.. Introduction xxxi

high-performance database. If you need to use a database, then either
write one yourself or buy someone else's. If you use a resource fork as a
database with thousands of entries, you will have performance problems.
Also, the resource fork of a file cannot be shared across a network, unlike
the data fork.

How did resources come about? The Macintosh folklore is that
they were invented as a result of Pascal. Apple, because of the
heavy use of UCSD Pascal on the Apple II, the Apple III, and the
Lisa, used Pascal to write a lot of Macintosh operating system.
Pascal does not support static initialization (as the C language
does). Resources were invented as a way to initialize large data
structures without having to write a lot of code.

Once the concept was there, resources were used all over the
operating system because they are such a natural concept. You will
see many new resource types described in this book. The Installer,
the Help Manager, and the text services in System 7 all use
resources to perform their functions.

Resources have been the key to the internationalization of the Macin
tosh operating system and application software, beginning with fonts.
The Macintosh was the first affordable machine that supported multiple
fonts as a basic capability. Soon afterward, many people created fonts for
other languages, such as French, Greek, and even Sanskrit. Apple eventu
ally created the Script Manager as a component of the operating system to
provide support for languages that need more than one or two hundred
characters, such as Chinese, Japanese, and Korean. The Script Manager
also supports languages that are written from right to left, such as
Hebrew, Arabic, and Farsi. The Script Manager uses a lot of resources to
accomplish its functions. For more on the Script Manager, see Chapter 9 .

.,. QuickDraw

QuickDraw can be thought of as the graphics manager of the Macintosh
operating system. Everything that appears on a Macintosh screen or on a
printer was drawn by the QuickDraw routines. (Actually, that last state
ment isn't completely true-advanced programmers sometimes print
using PostScript code directly.) .

QuickDraw provides data structures for basic kinds of graphic objects,
including lines, rectangles, rounded rectangles, ovals, wedges, polygons, and

xxxii Introduction

regions. A region is an arbitrarily shaped object described as a collection of
the other types of shapes. Regions are especially important because you can
easily manipulate a complex graphic with QuickDraw routines.

QuickDraw provides a set of data structures and a set of routines that
work with them. The QuickDraw routines are used throughout the oper
ating system and applications to draw all graphics. All of the QuickDraw
operations are ultimately implemented by a set of low-level routines
known as the QuickDraw bottleneck procedures. This set of 13 routines
varies from device to device, because drawing on a display is different
from drawing on a printer.

The QuickDraw bottleneck procedures dramatically reduce the support
for various displays, printers, and other output devices. Traditionally,
operating systems know nothing (or very little) about output devices.
Therefore, the application programmer must write code to support each
type of display and each type of printer. Word processing programs under
MS-DOS typically require a lot of code to support the hundreds of differ
ent types of printers and the dozens of types of displays. The Macintosh
operating system is different because application programmers do not
have direct access to displays or printers. All drawing goes through
QuickDraw. The primary consequence of this is that the display or printer
vendor provides the operating-system-level support for its output device.
Another consequence is that most applications are almost completely
device-independent with respect to both displays and printers.

Macintosh applications are rarely device dependent. Some types of
applications, such as color paint programs, can be used only on color
displays. Some high-end publishing applications use PostScript and con
sequently must be used with a PostScript printer .

..,. Events

Events are generated either by the user or by the operating system. The
user generates events whenever a key is pressed down or released, when
ever the mouse button is pressed down or released, or whenever a disk is
inserted into a drive. Note that moving the mouse does not create an
event. The operating system also generates events whenever the relative
order of windows is changed, such as when a user clicks on a window
behind the active window.

Macintosh applications are event-based. This means that each applica
tion uses the following basic structure:

1. Initialize the application
2. Get an event

Note~

~ Introduction xxxlii

3. Process it
4 . Loop
5. Close the application

This is a very different s tructure than applications written for UNIX or
MS-DOS. Under these other operating systems, applications typically
prompt the user and wait for a response. The code that communicates
with the user need not be structured in any particular way.

Because the Macintosh operating system encourages event-based
applications, Macintosh applications typically appear to be controlled by
the user. Under MS-DOS and other operating systems, the application
typically appears to be in control. The Macintosh human interface guide
lines require tha t the user be in control as much as possible. The operating
system supports this directly.

System 7 extends the concept of events. For the most part, events
before System 7 are a low-level concept. A key-down event does not
carry much meaning. It must be extensively interpreted to provide mean
ing to the application. The concept of high-level events has been added
with System 7. A high-level event might be " print this document"-obvi
ously a much higher-level concept than a key-down event. As you will
see later in this book, high-level events w ill lead to interesting and power
ful changes in the way that you interact with applications and documents .

.,... Technical Documentation on the
Macintosh Operating System

Before we move on to other topics, Jet's briefly look at the technical docu
mentation on the Macintosh operating system. Apple provides four sets
of documentation. Let's first look at these.

Apple is different from most other computer companies-they still
have a sense of humor. Bits of humor crop up in the documenta
tion, but you 'll see them only if you look for them. As an example,
one of the Time Manager routines is named PrimeTirne. Another
example is the names for the Developer COs, sent once every
quarter to all Apple Associates and Partners. Some of the titles are
"Phil and Dave's Excellent COs," "Night of the Living Disk," and
" A Disk Named Wanda."

xxxiv Introduction

...,. Inside Macintosh

The most important set of technical documentation is Inside Macintos/1,
which was originally published as a three-volume set. With the introduc
tion of each significant new member of the Macintosh family of com
puters, a new volume was added. Volume IV was written to describe the
changes to the Macintosh operating system made with the Macintosh
Plus, primarily the new Hierarchical File System (HFS). Volume V
includes all the changes to the Macintosh operating system made for the
Macintosh II, the first modular Macintosh. Among the many topics cov
ered there are Color QuickDraw and the Slot Manager, which provides
access to NuBus cards. Volume VI of Inside Macintosh was written to
describe all the changes to the operating system brought by System 7.
Volume VI is very large-for good reason, as you will see. Every volume
of Inside Macintosh should be on every Macintosh programmer's shelf
you can't program the Macintosh without it.

...,. Technical Notes

Another important set of documentation is known as the Technical Notes.
These notes, distributed by Apple to members of the Apple Partners and
Associates program, are available to anyone else by subscription through
APDA, the Apple Programmer's and Developer's Association, and are
also widely ctistributed to most electronic information systems. Tech
Notes can be freely copied, but cannot be sold. The Tech Notes describe
miscellaneous features of the operating system that ctidn' t make it into
Inside Macintosh, techniques for using the operating system that are not
documented anywhere else, bugs in the operating system, bugs in
Apple's development tools, and so on. Every programmer should be
aware that they exist and read through the list of titles regularly. About
three hundred Tech Notes are out now.

It is often ctifficult, especially for programmers new to the Macintosh, to
find their way around Inside Macintosh and the Tech Notes. Th is is
because both sets of documentation have evolved over a five-year period.
Apple will reorganize them .

...,. Apple Technical Library

A third set of technical documentation is the Apple Technical Library,
published by Addison-Wesley. These books document relatively stable
aspects of both the Macintosh software and hardware. They are all writ-

.,.. Introduction xxxv

ten by technical writers at Apple. This series includes the following
volumes:

• All the volumes of Inside Macintosh
• Inside AppleTalk, which describes the AppleTalk protocol suite
• Human Interface Guidelines: The Apple Desktop Interface, which doc

uments the Macintosh human interface guidelines (every program
mer should have a copy of this book)

~ APDA Documents and Software

The last set of technical documentation is not really a set. It consists of the
documents and software available through APDA, the Apple Program
mer's and Developer's Association. This department at Apple distributes
all technical documents and a great deal of software, such as Apple's own
development tools. By joining APDA, which requires signing an agree
ment and paying a small annual membership fee, you can also purchase
beta versions of some software and documentation. Among the many
products available from APDA are the following:

• Software Applications in a Shared Environment-Documents how to
write multiuser software using file servers (such as the new File
Sharing feature of System 7)

• Macintosh Programmers Workshop (MPW)-Apple's own develop
ment system; also available are compilers for Pascal, C, and C++

• MacApp-Apple's primary object-oriented application framework,
which you can use with either Pascal or C++; it includes full
source code

.,... Conclusion
In this chapter, you've looked at how this book is structured, as well as
how to use this book in conjunction with Inside Macintosh, Volume VI,
and other Apple technical documentation. Readers who are less familiar
with the Macintosh have had a chance to review terminology and major
concepts of the Macintosh operating system.

xxxvi ..,..

Get Info 11>

Introduction

Inside Macintosh, Volume VI, documents most of what is new in
System 7. This book is published for Apple Computer by Addison
Wesley and is available through any bookstore. If you are pro
gramming for System 7, you will need this book by your side. You
will need the previous volumes of Inside Macintosh as well if you
are programming the Macintosh.

If you are new to the Macintosh, you should also look for some
introductory Macintosh programming books, such as Macintosh
Programming Primer, Vols. I and ll (Addison-Wesley 1989, 1990).
Another resource is Stephen Chernicoff's four-volume set entitled
Macintosh Revealed published by Hayden Books. More experienced
programmers will also be interested in other books in the Macin
tosh Inside Out Series (Addison-Wesley).

Throughout this chapter and the remainder of this book, you will
see references to APDA, the Apple Programmer's and Developer's
Association. This is an Apple group that distributes almost all of
Apple's technical documentation. To order anything from APDA, you
must sign an agreement and pay an annual membership fee, because
you can buy beta versions of some development tools and documen
tation.

To join APDA, you can call 800/282-2732 in the USA, 800/
637-0029 in Canada, or 408/562-3910 from anywhere else, or
write to the following address.

APDA

Apple Computer, Inc.
20525 Mariani Ave., MS 33-G

Cupertino, CA 95014
USA

If you will never use beta versions of tools or documents, you can
join an alternative program known as Developer Express. Call APDA
for more information.

1 Overview of System 7

...,. Introduction

In this chapter, you will be introduced to the strategy behind and the
history of System 7, then you will quickly look at all the components of
System 7. The components are presented starting with those most visible
to users and working toward those least visible to users, which mirrors
the structure of the remainder of this book. Finally, you' ll look at the
requirements for running System 7 .

...,. The Strategy behind System 7
The Macintosh operating system, v.rith its tight integration and powerful
human interface, has gradually evolved since its introduction in 1984.
Despite some big improvements, such as the Hierarchical File System
(released with the Macintosh Plus) and MultiFinder, it has been a process
of evolution, not revolution.

Contrast the situa tion in the MS-DOS world with what Apple is doing
on the Macintosh. MS-DOS users now have three different paths to
choose from. The most conservative path is to simply continue with
MS-DOS, which is continuing to evolve. The riskiest path is to switch to
OS/2 (a new opera ting system) and Presentation Manager (the user inter
face that goes with it), which requires some users to buy new hardware
and new software. A middle path is converting to Microsoft Windows, a
user interface that resides on top of MS-DOS. Windows can run on some,
but by no means all, MS-DOS machines. Many existing MS-DOS applica
tions will run at the same time as Windows, so existing software doesn' t

1

2 ..,. Chapter 1 Overview of System 7

need to be scrapped. This is a difficult, confusing choice for both the user
community and developer community.

Other companies, especially Microsoft, have seen the advantages of
Apple's sophisticated graphical human interface. Windows and Presenta
tion Manager on Intel-based microcomputers, and Motif and NeWS on
workstations, have raised the standard of the average computer-human
interface. These interfaces weren' t a reaction just to the Macintosh inter
face, but Apple's success clearly demonstrated the importance of a high
quality, consistent, and compatible interface.

Although the Macintosh interface is still superior to Windows and so on in
many people's eyes, much Jess of a gap exists between the Macintosh inter
face and Windows than behveen the Macintosh interface and MS-005.
Apple is therefore being forced to innovate at a faster pace than before.

In the Macintosh world, existing operating-system capabilities are
being enhanced and new capabilities are being added, such as the Com
munications Toolbox, the Data Access Manager, and high-level events.
These are much more than simple extensions to the operating system.
Apple is redefining what an operating system is. It is incorporating fea
tures into the operating system that were previously in the arena of appli-
cation software. ,

Why is Apple doing this? Apple has neve~ been a follower, but rather a
I

leader. The company took an enormous risk;with the Macintosh, and that
gamble has clearly paid off. Apple did not make a PC clone when many
analysts and industry pundits were advising that such a machine was
crucial to Apple's success.

This redefinition of what an operating system is means application
developers can now use high-level services by making a handful of system
calls. Previously, for example, talking to a database might require dozens or
hundreds of calls to accomplish a task. By using the Data Access Manager,
developers can accomplish this same task using only a few calls. This
means that users can expect to see communications capabilities in any
application where it makes sense simply because it is so easy for developers
to include that capability now. In addition, because these communications
capabilities are part of the operating system and because a standard user
interface has been defined for them, users will expect to see a standard set
of dialogs whenever they use communications functions.

The net effect of these changes will be that Macintosh applications will
tend to be more powerful, but still easier to use, than applications on
other platforms. By raising the level of functionality of the Macintosh
operating system, Apple gains a competitive advantage over other com
panies. By taking advantage of these new features in your applications,
you can gain an advantage over your competitors.

Note.,.

.,.. The Components ot System 7 3

..,. The History of System 7

System 7 arrived during a turbulent period in the computer business. To
understand the feature set of System 7, let's look briefly at its history.

The System 7 that was announced at the Worldwide Developer's Con
-ference in 1989 is different from the System 7 that started shipping in
1991. Many features were dropped between the initial announcement
and the first alpha test version available to developers. (The alpha version
was first delivered to developers at the 1990 Worldwide Developer's Con
ference, about a year after its announcement!)

The Worldwide Developer's Conference is open to members of the
Apple Partners and Associates programs. These two programs
enable commercial, in-house, and educational developers to get
technical and marketing information from Apple.

The delivery of System 7 slipped more than once. System 7 required an
enormous amount of code, some of which had to be compatible with past
versions of the operating system, and some of which was written for the
first time. As with any large-scale software project, unforeseen problems
occurred and the delivery of System 7 was delayed.

The schedule for System 7 could have been much worse. Fortunately
for Apple, System 7 was not a complete rewrite of the Macintosh operat
ing system. In fact, System 7 extends the boundaries of the operating
system by either enhancing existing capabilities or creating new capabili
ties. Few of the System 7 features depend on other new features. Certain
features, however, such as high-level events, were crucial to the new
operating system. A slip in the schedule for a critical feature meant that
the schedule for the entire operating system slipped. Other components
were removed from System 7 if they did not meet the System 7 schedule.
These components will presumably be added to the operating system
sometime after the initial release of System 7. Chapter 21 discusses possi
ble futures for System 7 .

..,. The Components ~f System 7
Apple has both improved existing portions of the operating system and
added new components. The following sections give an overview of each
part of System 7.

4 ~ Chapter 1 Overview of System 7

..,. The Finder

The Finder was completely rewritten for System 7. Although it is similar
in appearance to the previous versions of the Finder, it has been remark
ably improved. Users will notice changes to the Finder more than almost
any other feature in System 7.

The Font/DA Mover is no more. To install fonts, desk accessories, or
sounds, the user simply drags them into the System Folder. The System
Folder has been simplified, and it now contains a set of folders that organ
ize its contents along functional lines. For example, a ll preferences files go
into the Preferences folder, and all control panel devices go into the Con
trol Panels folder. When the user drags files into the System Folder, the
Finder tries to place the file in one of these special folders.

For the first time, the Finder helps users find files. Using the Find com
mand, you can select files using one criterion, such as file name, kind,
creation date, and so on.

Users can put any desktop object in the Apple menu, including desk
accessories, applications, folders, and documents. The user accomplishes
this by moving those objects into the Apple Menu folder in the System
Folder. The list of open applications that was located at the bottom of the
Apple menu has moved to the right-hand side of the menu bar. They are
now located in the Application menu. Desk accessories are launched into
their own memory partition, so they also appear in this menu.

Apple has also made numerous other changes to the Finder, such as
improvements in viewing choices, aliases, and File Sharing. The Finder
interface has been substantially improved and made more consistent.

..,. The Human Interface

The Macintosh human interface guidelines h ave been revised to take Sys
tem 7 into account. The Finder illustrates many of these new guidelines,
which are described in Inside Macintosh, Volume VI.

For example, new types of icons are now supported by the Finder,
including large icons (32 bits by 32 bits) and small icons (16 bits by 16 bits).
Color icons are supported in addition to black-and-white icons. The guide
lines suggest how to design the most effective icons in all these cases.

The new guidelines provide for movable modal dialogs. The user can
move this type of dialog around in case it obscures something the user
needs to see in order to respond to the dialog. The guidelines also support
keyboard navigation in dialog boxes. Experienced users will appreciate
this when, for example, they key through the scrollable list of files in the
standard output file dialog.

..,.. The Components of System 7 5

Other guidelines cover the new featw·es of the operating system, such as
the Edition Manager. They in clude support for True Type, the new font tech
nology, which can produce smooth, nonjagged fonts a t any (integral) size .

.,.. The Installer

The Installer, the standard utility used to install the system, has been
improved. Any application developer can write an Installer script for his
or her users to install software, although it becomes especially useful
when the software package involves placing files in special folders, copy
ing resources, and so on . However, other installation programs are as
useful or more useful than the Installer if the entire collection of files is
simply copied to a single folder.

Version 3.1 of the Installer allows users to select a single button to
install an application. The Insta ller script consists of a set of resources.
Some of these resources describe rules that the Installer follows to decide
which files or resources should be copied and so on. These resources,
while nontrivial to create, make the installa tion of complex software
packages relatively easy for users. A complex package, for example, might
include an application, an INIT, and some resources that depend on
which Macintosh the software is installed upon.

This Installer supports tvvo important new capabilities. First, it supports
" live" installs. That is, the user no longer needs to quit from other applica
tions to run the Installer. Second, it supports installation over a network .

.,.. lnterapplication Communications and High-Level Events

System 7 greatly expands the idea of events. Previously, applications
received low-level events, such as when a key was pressed down or when
the mouse button was released. Applications can now receive high-level
events, which you can use to provide high-level capabilities.

The most important class of high-level events is called Apple events.
Apple events are standard sets of high-level events. The Finder uses a set
of required Apple events to communicate with applications. These events
are "open," "open document(s)," "print document(s)," and "quit. " Other
sets of standard Apple events cover generic handling of text and graphics.
Yet other sets of them will be created to manage the capabilities of various
types of applica tions, such as databases, spreadsheets, and word proces
sors. You can also create proprietary high-level events. Only applications
that were written with these events in mind will be able to use them.

It is very easy to use Apple events, interapplication communications

6 ~ Chapter 1 Overview of System 7

(also referred to as the PPC Toolbox), and high-level events over the net
work. In fact, from the programmer's point of view, there is little differ
ence between using these services locally or over a network.

Apple events are in many ways the most significant change that System
7 brings. Although to users they are not the most obvious aspect of Sys
tem 7, they portend a major change in the way we interact with com
puters. As more and more applications support more and more sets of
Apple events, users will be able to connect their applications in interesting
ways. Users will gradually stop interacting with applications and start
interacting directly with documents. This is a much more natural way to
use computers than what we do today.

IJJ. The Edition Manager

The Edition Manager, new with System 7, provides a new way of sharing
data between applications. It is similar to the Clipboard in that a user
must select object(s), but rather than copy to the Clipboard, the user
"publishes" the selection. It becomes an edition file. Other users can then
subscribe to the edition file and place the contents into documents, much
like pasting from the Clipboard.

The difference between the Clipboard and the Edition Manager is signif
icant. To illustrate this, let's look at an example. Let's say that the data
being passed from one application to the other is a picture. Once you paste
the picture into a text document, it remains the same. If the picture in the
graphics program changes, you have to go to the graphics program, select
the picture, copy it to the Clipboard, switch to the word processor, select
the old picture, and paste from the Clipboard. If you have only a couple of
pictures, that isn't much work. If you have dozens or hundreds of pictures,
keeping the text document up to date becomes a tedious process.

On the other hand, if you use the Edition Manager to publish the pic
ture, life is much easier. Simply subscribe to the edition and place it in
your document. Whenever the picture has changed and you open your
text document, you will see the latest version of the picture. The Edition
Manager handles much of the magic here, but you will have to write
some code to enable the Edition Manager .

..,. True Type and Fonts

System 7 brings TrueType, Apple's new font technology. TrueType was
born out of the technical limitations of bitmap fonts (Apple's previous
font technology) and out of Apple's lack of control over PostScript. Before
System 7, fonts were stored as bitmaps in fixed sizes. The Font Manager
would do its best to provide a bitmap for a particular font in a particular

..,. The Components of System 7 7

size in a particular style. In many cases, though, it had to resort to scaling
the bitmaps from a different size. The results varied from passable to
d0\"111right ugly.

TrueType fonts are stored as font outlines. When a font in a particular
size is requested, the bitmap for it is generated on the fly. The results
always look good because the resultant bitmap was algorithmically calcu
lated for that size ra ther than scaled.

For the most part, application programs are not affected directly by
TrueType. Restrictions on font sizes should be removed, however, since
TrueType can provide fonts in any (integral) size.

TrueType means tha t high-quality output is available from lower-cost
output devices. Specifically, it means that the output from a non-Post
Script printer, such as a LaserWriter IISC, is of the same quality as from a
PostScript printer, such as the LaserWriter liNT.

~ TextEdit and International Services

TextEdit, the basic text-editing service, has been improved with System 7.
This la test version h as been completely internationalized, supporting the
Script Manager. This means that in addition to supporting multiple fonts,
sizes, and styles, TextEdit supports two-byte characters (used for Japa
nese, Chinese, and Korean) and mixed-direction text (left-to-right scripts
and right-to-left scripts). Routines are also provided to calculate word and
line breaks.

The Macintosh is an accepted machine not just in the United States, but
in many other countries. The European countries and Japan are becoming
big markets for the Macintosh. Over 40% of Apple's revenues are from
sales outside the USA. The international services provided by the Macin
tosh operating system make it fairly easy to create software that can be
internationalized . If you want to do this (and you should think about it
seriously, because these markets are growing faster than the U.S. market),
do it when you create your software. Although some kinds of software
can be retrofitted, other kinds of software, especially text-intensive soft
ware, cannot be retrofitted without a great deal of work. By putting in a
small amount of additional work in the beginning, you can take advan
tage of these other markets later on with li ttle additional work.

~ The Data Access Manager

The Data Access Manager and the Data Access Language (DAL, which
was previously kn own as CL/1) are integrated into the system software
starting with System 7. The Data Access Manager (DAM) provides a s tan
dard programmatic interface to re lational database management systems.

8 Ill> Chapter 1 Overview of System 7

The DAM is intended initially to provide access to relational database
management systems that run on minicomputers (such as Ingres,
lnformix, and Oracle) and mainframes (such as DB2). The DAM, by pre
senting a generic interface to relational databases, enables users and
applications to decide which database to work with at runtime, instead of
being hard coded into the application.

You can use the Data Access Manager in one of two ways. The sim
plest, and least flexible, is to use a single system call. This call sends a
query to a remote database and returns the results. The second method,
which is a little more complicated but considerably more powerful, uses a
dozen other calls to the Data Access Manager. These calls allow applica
tions to modify queries on the fly and so on. In either case, the DAM
establishes a connection with the remote computer, starts up the remote
database management system, transla tes the query into the proprietary
query language, retrieves the resul ts, and converts them if need be.

Queries are written using the Database Access Language. This lan
guage provides a superset of the capabilities of SQL, the standard
rela tional query language.

As the Data Access Manager evolves, it may become the standard pro
grammatic interface to databases, both local and remote. If database ven
dors commit to the DAM by writing a low-level " database driver,"
known as a ddev, applications may be able to read from and write to most
Macintosh databases as well.

.,.. The Help Manager

The Help Manager, introduced with System 7, provides the first standard
help facility in the Macintosh operating system-"balloon" help. When
this feature is enabled, as the user moves the pointer over a screen object
that has help messages available, the Help Manager displays the help
message in a cartoon-like balloon. The content of the balloon tells the
user what the object is and how it can be used. This is an interactive help
facility and is not modal like many other help systems.

For the most part, you can provide help in most applications by adding
special resources. In certain cases, such as when your application uses
custom MDEFs (Menu DEFinition procedures), you' ll have to write code
to support the Help Manager.

The help available under System 7 will be useful primarily for novice
Macintosh users and for anyone learning a new application. Other forms
of help are required for other situations. Apple has clearly left room for
additional help facilities in the future.

IJil> The Components of System 7 9

~ The Sound Manager

The Sound Manager has been enhanced in System 7 to support some new
capabilities. The Sound Manager now supports playing sounds continu
ally from disk while application(s) are running, playing and mixing multi
ple channels of sound in real time, monitoring the CPU load that the
sound channels in your application and others are making, and monitor
ing the status of sound channels.

An important new capability, released with the Macintosh LC and !Isi,
supports sound input. An analog-to-digital converter built into the latest
Macintosh computers can take an analog signal from a variety of sources
and convert it to digital sound. The digital version of the sound can then
be recorded to disk or played. The Sound Manager also supports external
sound input hardware. This new capability will be used to implement
voice mail and voice annotation of documents.

~ The Communications Toolbox

The Communications Toolbox, introduced shortly before System 7, is
now integra ted into the system. This toolbox provides a standard pro
grammatic interface to file transfer, terminal emulation, and connection
protocol services. Users can easily switch from one connection protocol to
another (and from one file transfer protocol and so on) by selecting
another file transfer tool, another terminal emulation tool, or another con
nection protocol tool. These tools are external pieces of code, allowing for
great flexibility in their use. Users also benefit from the Communications
Toolbox because it provides a standard user interface for many aspects of
communications. This reduces training time and, to a certain extent, the
amount of documentation.

The Communications Toolbox consists of five managers: the Connec
tion Manager, the Terminal Manager, the File Transfer Manager, the
Communications Resource Manager, and, lastly, the Communications
Toolbox Utilities. This general communications framework simplifies pro
gramming for communications services. Applications can now provide
communications services whenever and wherever they make sense. You
can provide these services with only a moderate amount of work.

~ AppleTalk and File Sharing

The System 7 version of AppleTalk, the local area network protocol suite
that is built into every Macintosh ever shipped, now includes Phase II sup
port. Apple Talk Phase II was announced and shipped before System 7, and

1 0 .,. Chapter 1 Overview of System 7

it has been incorporated into the system. Many of the Phase II features do
not affect applications at all, but some are especially useful.

The AppleTalk Data Stream Protocol (ADSP) is included as part of Sys
tem 7. This protocol is easier to use for creating applications than the
other protocols in the AppleTalk protocol suite. You can use ADSP to
implement both clients and servers, as well as to implement peer-to-peer
systems.

File Sharing brings a file server to everyone's machine. It provides a
subset of the features (and performance) of the AppleShare software,
which requires a dedicated machine. With Macintosh File Sharing, appli
cation programmers can assume that a file server is always available.
Therefore, multiuser software will be easier to develop. When users need
more performance from the file server, they can upgrade to AppleShare
or to another AppleShare-compatible server.

~ QulckDraw

System 7 incorporates 32-bit QuickDraw, the third major revision to
QuickDraw. The first version supported black-and-white and "classic
color," where eight colors (including black and white) are available. The
first machine capable of displaying color was the Macintosh II, and simul
taneous with its release came Color QuickDraw. This version supported
8-bit color, meaning that up to 256 colors can be used at a time. The third
version of QuickDraw supports 32-bit color, which means that millions of
colors can be used at a time, if your hardware supports it.

The latest version of QuickDraw also provides improved support of
gray-scale displays, extensions to the PICT format to support 32-bit color
and font names, and improvements to the CopyBits routine.

The Color Picker Package, which applications use to request a color
from users, has also been improved. A new set of routines allows applica
tions to convert colors from the RGB (Red-Green-Blue) model to the CMY
(Cyan-Magenta-Yellow), HSV (Hue-Saturation-Value), and HLS (Hue
Lightness-Saturation) models.

The Palette Manager provides support for maintaining palettes of col
ors. The Graphics Device Manager provides an interface to graphics out
put devices. This manager is used primarily by low-level code, but not
much by applications.

The Picture Utilities Package, introduced with System 7, provides rou
tines that make it easy to examine PICT files and PixMaps. For example,
you can use these routines to get the horizontal and vertical resolution,
the number of lines or rectangles in the picture, and the fonts, sizes, and
styles in the picture.

..,.. The Components of System 7 11

..,. The Memory Manager and Virtual Memory

The largest ch ange in the Memory Manager is the arrival of virtual memory
(VM), which is available only on machines with a memory management
unit (Macintoshes with a 68020 and a 68851, or a 68030, or a 68040, sup
port VM; all others do not). Virtual memory allows a disk file to substitute
for additional memory. Obviously, virtual memory cannot be as fast as
RAM, but the goal of VM is to permit users to buy RAM for their average
usage. VM can be used during times of peak usage, such as when the user
wants to run an additional application. Virtual memory does not affect
application programmers very much at all. On the other hand, the perfor
mance of applications that are memory intensive, such as multimedia and
scanner applications, may be adversely affected by VM. Some device driv
ers (especially disk drivers and NuBus drivers) will be affected by VM and
may need to be rewritten to work with it.

Temporary memory, the heap memory not used by any processes, is
much easier to use. Applications can use temporary memory when addi
tional memory is required for short periods of time, such as opening or
printing a document. Previously, the system software imposed severe
limita tions on how it could be used. You can use regular Memory Man
ager calls, for the most part, with temporary memory. Applications can
now hold temporary memory for reasonably long periods, whereas before
it had to be released before making calls to the Event Manager.

Applications should now be "32-bit clean." 32-bit cleanli11ess means
primarily that applications use 32-bit memory addresses. The older ver
sions of the Macintosh operating system used 24-bit addresses, and some
applications took advantage of this by using the extra byte. There are
additional rules for 32-bit cleanliness . For example, CDEFs and WDEFs
require a small change to be 32-bit clean .

..,. Processes

The Macintosh operating system currently supports a form of multitask
ing known as coopera tive multitasking. This means that applications
must follow certain rules if the system is to appear responsive to the user.
Introduced with MultiFinder, this for!ll of multitasking has now been
completely integrated into the system. Under System 7, users can no
longer run in Finder mode-that is, the system can always run more than
one application. Although the Macintosh operating system does not yet
support preemptive multitasking (as UNIX does), System 7 lays some of
the groundwork for it.

The Process Manager, arriving with System 7, brings the concept of

12 .,. Chapter 1 Overview of System 7

process serial numbers (PSNs}, which uniquely identify each running
application or desk accessory. A set of routines allows software to get
information about any process, bring a process to the front, launch a desk
accessory, or launch an application.

The Notification Manager, introduced with MultiFinder, provides
methods for software running in the background to notify the user. These
services are one-way only-software can talk to the user, but the user
cannot talk to software running in the background. (The user might have
to bring an application to the foreground to communicate with the soft
ware. The Print Monitor is an example of this.) These services are an
important addition to the user interface because the user would be quite
surprised if the background software were to suddenly jump to the fore
ground. The Notification Manager can be used by applications, device
drivers, and so on.

The Time Manager has been enhanced with System 7 to provide drift
free fixed-frequency scheduling services for tasks . Basically, the Time
Manager maintains a queue of small tasks that it executes at the specified
time. The latest version provides much more accurate timekeeping than
previous versions. You can also use these services to make accurate mea
surements of elapsed time .

..,. The Fi le System

The fil e system has been significantly enhanced in System 7 with the
addition of file IDs, FSSpec records, the PBCatSearch system call, aliases,
changes to the standard file package, Finder information, and the new
structure of the System Folder.

File IDs provide a unique ID for each file on a volume. Previously, files
on a volume could be tracked only by name. If the user renamed a file,
there was no way to find the file using its old name. File IDs now enable
users to find a file again not only if its name has changed, but also if its
location on that volume has changed.

FSSpec records are a new way of specifying files when using File Man
ager calls. Instead of using various combinations of volume reference
number, working directory ID, drive number, directory ID, partial
pathname, andjor full pathname to specify a file, the new calls take an
FSSpec record instead. One call creates an FSSpec record using various
combinations. FSSpec records make it easier to save file location infor
mation.

The PBCatSearch routine provides a single call to search a volume for
files meeting a set of criteria. The search criteria can be as simple as
matching a file name, or they can involve much more complex parameters

~ The Components of System 7 13

such as file size, file creati.on date, file type, and so on. (Previously, this
function would have required several pages of code to accomplish.)

Aliases, which effectively provide more than one location for a file, are
a new capability. An alias behaves, for the most part, just like the file to
which it points. You can use an alias to provide a generic file reference so
that even when the file it points to is changed, the alias does not have to
change.

The Standard File Package, enhanced with System 7, is used by the
majority of Macintosh applications when users open or save files. The
latest version of this package has an improved user interface, making
users happy; it is also much easier to customize than before, making pro
grammers happy.

Finder information is now available to applications that need it through
a new set of calls. This information includes application signatures (that
is, the application creator type and the file types it owns), icons for appli
cations and documents, and the user's comments. This information was
previously kept in an invisible file called Desktop, and it was not accessi
ble to applications.

The structure of the System Folder has changed for the better. Pre
viously, the System Folder held many different kinds of files. It was not
uncommon for a System Folder to contain more than a hundred files. The
lack of organization in this folder made maintenance a headache. The
new architecture of the folder means that files are organized into func
tional categories, such as preferences files, control panel files, and items
(such as applications) that should be opened at system startup time. These
special folders are accessible to applications by a new system call.

..,.. The Hardware Managers

The Slot Manager, whkh provides a programmatic interface to NuBus
cards, has been enhanced in System 7 to work with 32-bit addresses. The
routines provided by this manager are used primarily in device drivers
for NuBus cards. Application programmers will rarely need to use this
manager.

The Power Manager, introduced with the Macintosh Portable, provides
applications, drivers, and system software with control and access to the
electrical power of the Macintosh Portable. The Portable is never off; if it
isn' t active, then it is either in the idle state (when the CPU runs at a slow
clock speed) or asleep (when the CPU is not running, but some circuitry is
active, waiting for the user to restart the machine). Applications can be
left open in both the idle and sleep states. Some applications may want to
control when the machine enters either of these states.

14 ~ Chapter 1 Overview of System 7

.,.. Running System 7

This latest version of the Macintosh operating system provides many new
capabilities. Because so much has been added to the operating system,
new requirements exist for the hardware required to run it: requirements
for RAM and requirements for running virtual memory.

~ Memory Requirements

The requirements for running System 7 are simple: You need a minimum
of 2 megabytes (Mb) of random access memory (RAM) to run System 7.
Every Macintosh, from the Plus on, can run System 7.

Apple could reduce the memory requirements of future machines by
moving portions of System 7 into the ROMs of new machines. It isn' t
clear that this will be worth doing, though. The semiconductor industry is
shipping 4 megabit (4Mbit) RAM chips today and is developing 16Mbit
chips in the next couple of years. Five years ago, 64K of RAM was a lot of
memory, but today it's not much at all compared with the amount of
memory in a Macin tosh Plus. In the same way, the members of the Mac
intosh family arriving in two years will probably have lots of RAM com
pared to the Macintoshes of today.

~ Virtual Memory Requirements

Virtual memory provides a less expensive source of memory than addi
tional RAM chips. To run virtual memory (VM) under System 7 (and any
future versions), you must have a memory management unit (MMU).
This is a chip that helps the CPU translate memory references from a
logical address space into physical memory. This translation process has
to take place in hardware, because it must happen quickly. It is not possi
ble to do this in software and have an acceptable level of performance.

No MMU chip can work with a 68000 CPU chip, so any machine based
on a 68000 cannot run VM. However, such machines can run most other
portions of System 7 (except Color QuickDraw and related managers).

Macintosh computers with a 68020 CPU chip can run VM if you install
a Motorola 68851 PMMU chip. The PMMU chip is a memory manage
ment chip designed to support virtual memory for the 68020 CPU. The
AMU chip that was shipped in the original Macintosh II is not an MMU.
This chip performs a simple address translation and cannot perform the
translation needed to support VM. You must replace it with the Motorola
chip if you want to run virtual memory.

Macintoshes based on a 68030 or 68040 chip have an MMU built into
the CPU chip. All such machines can run VM.

~ Conclusion 15

Apple recommends that you have no more than twice as much virtual
memory as physical memory. You may use more or less virtual memory,
but the operating system has been optimized for this ratio.

Another requirement for running VM is disk space. Virtual memory
produces a larger address space by keeping active memory pages (a mem
ory page is a contiguous chunk of memory) in memory. Idle memory
pages (a chunk of memory) are stored in a disk file. This file must be as
large as the total amount of virtual memory, not the difference between
virtual and physical memory. This is because VM needs to be able to
move any page of memory to disk. For the sake of efficiency-and VM
must be very efficient- the mapping between virtual memory and this
disk file must be simple. It's easiest to use a disk file as large as the size of
virtual memory, because the mapping between the location of a page in
virtual memory and its location in the disk file is trivial. Figure 1-1 illus
trates this simple mapping.

Virtual
memory

A page of vi rtual memory

Same page of virtual memory
/ when moved to disk

L-----~----------------~------,
Disk file

on paging device
(hard disk)

Figure 1-1 . The mapping between virtual memory and disk

..,.. Conclusion
In this chapter, you first learned about the strategy behind System 7 and its
history. With System 7, Apple has redefined what an operating system is
by increasing the level of functionality. You have also been introduced to
each of the major components and the requirements for running System 7.

16 ..,. Chapter 1 Overview of System 7

Get Info Ill> For more information about each of the System 7 components,
refer to the succeeding chapters in this book. At the end of
each chapter, you will find references to additional technical
information.

2 The Finder

..,. Introduction
The Finder is a component of the standard system software that provides
file and process management capabilities. The Finder dis tributed with
System 7 has been completely rewritten in C++. Its interface is compati
ble with older versions of the Finder, but has nonetheless been signifi
cantly improved. In this chapter, you' ll look at the major changes to the
Finder.

The interface has a few big changes and many small changes. The
Finder is the one place where every user will feel the difference between
System 7 and earlier systems. Apple has clearly spent a lot of time polish
ing the interface. The new Finder answers most of the complaints about
the earlier Finders. It also provides an excellent example of how a user
interface can evolve and yet remain compatible with older versions .

..,. The Menu

At first glance, the menu bar on the new Finder doesn' t look that different
from earlier Finders. It has a new menu named Label, but that seems to be
about it. Look a little closer, and you' ll see that the menu bar actually has
quite a few changes. Let's start with the Apple menu and work toward the
other side, from the user's point of view. The Finder's menu bar is illus
trated in Figure 2-1.

17

18 ~ Chapter 2 The Finder

r * File Edit Uiew label Special CD 19) .,
JhiiWMW Wmf ~ i&am:ws' -& -; r &-;11~ &- iUi·itt·il··· -~th :i rih&:ht · ·5 lD't"M'iM&iUh"Om:iJC·if&Si ;:am J- hi

Figure 2-1 . The Finder's menu bar

.,. The Apple Menu

The Apple menu has changed. No longer does it contain a list of desk
accessories and a list of open applications. It now contains a lis t of
desktop objects. Users can add anything on the desktop to the Apple
menu, and when they select that object from the menu, it is opened by
the Finder. You can still have desk accessories in the Apple menu, but you
can also have applications, a document file, or a folder. How do you add
things to the Apple menu? By moving them into the Apple Menu folder,
which is in the System Folder. Where did the list of active applications go?
See the Application menu .

.,. The File Menu

The File menu now has a "Find .. . " command. For the first time, the Finder
finds files. Previously, you would have used Apple's Find File desk acces
sory (DA) or a program like On Technology's On Location to track files
down. The "Find ... " command provides much stronger search capabilities
than the Find File DA, but it doesn' t provide all the capabilities of On
Location, which can search files by content as well as name.

By choosing the "Find ... " command, you' ll be presented with either a
simple dialog or a more complex dialog. The two versions of this dialog
are shown in Figure 2-2. When you enter a search criteria and then press
the Find button, the Finder searches for one or more files that meet your
criteria. If a file is found, then its folder is brought to the front and its icon
is highlighted. To find the next file meeting yolll' criteria, choose the "Find
Again" command .

..,.. The Edit Menu

The Edit menu under the Finder has not changed. However, the Edit
menu under many applications has changed with the addition of com
mands related to Publish and Subscribe. See Chapter 7 for more infor
mation.

..,. The Menu 19

Find

Find: I resedit

More Choices Cancel) n Find D

Find

Find and select items whose

I date modified .,... I ~..I _i:...;.s ______ .,......JI lli]/22191

Search I the se lected items • I

(Fewer Choices J Cancel l n Find D

Figure 2-2. The Find dialog box

~ The View Menu

The View menu has not changed a lot from previous versions, except that
you can view by label in addition to the previous choices. This is
explained shortly. When you are viewing files in a list, though, you'll see
small triangles next to folders. By double-clicking on one of these dots,
the contents of the folder will be expanded and displayed, or collapsed.
This allows you to view a hierarchy of files without having to open and
close folders. A list of files is shown in Figure 2-3.

~ The Label Menu

The Label menu is new with System 7. In addition to the default label
None, you can create up to seven labels for your files. By selecting one or
more objects on the desktop, you can then use this menu to label them.
Why would you want to do this? Perhaps you have two major responsi
bilities. All the files associated with your first job could be labeled differ
ently from those associated with your second job. The View menu now
supports viewing by label, so labeling files can be a useful feature. Files of

20 ..,. Chapter 2 The Finder

D

f> [] ENamples

"'V [] Intedaces

f> [] Aincludes

t>
t>

[] ASt:tuct:Macs

[] Cincludes

MPW
Size Kind

foldel

foldel

folde:t

foldel

folde:t

f> [] Pintelfaces foldel

[] Rlncludes folde:t

D Crndo ol 15K :MPW She

D MPWTypes.l 3K MPWShe 111111

D Pict ol 49K :MPW SheJ !Hi! ~

D S~Types.:t 42K MPWShe mi1!
D Types .:t 21K MPW She Ji

f> [] l.ib:ta:ties folde:t {7

¢ [J:m:::m:H!!i!H!i!i!i!i!ii!i!i!i!i!l!!i!!U!i!i!i!i!i!U!iH!i!!!i!i!iH!Hi!i!ii!i!i!i!!i!i!iH!ii!i!i!i!!Wi!i!ii!i!l!i!i!iid ¢ 12:1

Figure 2-3. A list of files

each kind of label are displayed in a different color, so here is one place
when a color machine is an advantage .

...,. The Special Menu

The Special menu has changed in a subtle way. If you look at the "Set
Startup ... " command, you'll see that you can no longer choose between
Finder and MultiFinder. With System 7, MultiFinder has been completely
integrated into the system. You can no longer run under the "uni-Finder."

...,. Application Menu

That's about it for the left-hand side of the menu bar. Let's see what the
right-hand side looks like. You' ll see either two or three icons on the right.
The rightmost icon is the Application menu. On older systems, when you
clicked on this icon, the current application was moved to the background
and the next application was brought to the foreground. Now this icon

.,. The System Folder 21

behaves like a menu. Its primary purpose is to display a list of active
processes. That means active desk accessories as well as active applica
tions are listed separately. You can also choose to hide the windows of the
active application and to show only the active application.

~ Script Menu

The next icon depends on whether you are using any script systems
besides the Roman script system (which exists in every system). If you
have installed any other script system, such as Japanese or Hebrew, you
will see an icon for the current script system on the menu bar. This icon is
the title of a menu that allows you to switch between any of the script
systems that are currently installed on your system. If the software you
are using has been designed for using multiple languages, you can use
several different languages and scripts in a single document.

~ Help Menu

The last icon (the leftmost icon on the right-hand side of the menu bar) is
the Help menu. This menu allows you to turn balloon help on or off. If
balloon help is on, then the Help Manager displays a help balloon when
ever the pointer is positioned over an object that has help messages. The
purpose of balloon help is primarily to answer the question, "What is this
object and what does it do?" While balloon help is on, the mouse behaves
as always. In other words, even though help balloons are being dis
played, clicking, dragging, double-clicking, and so on behave normally .

...,. The System Folder

System 7 brings major changes to the System Folder. Before System 7,
System Folders tended to accumulate large numbers of files, the functions
of which were rarely obvious. Let's look at how the new System Folder
creates more order, and then say goodbye to the Font/DA Mover.

~ The New System Folder

The System Folder under System 7 has a new look. Rather than dozens or
hundreds of files accumulating in one folder, the many files that belong in
the System Folder are now grouped by function into a set of special fold
ers inside the System Folder. These folders are listed in Table 2-1, and the
System Folder is shown in Figure 2-4.

22 ~ Chapter 2 The Finder

Table 2-1 . The special folders in the System Folder

Folder Name
Apple Menu Items
Communications
Folder
Control Panels

Desktop Folder

Extensions

Preferences
PrintMonitor
Documents
Rescued Items
from volume name

Startup Items

System

Temporary Items

Trash

Contents
Items that should appear in the Apple menu
Correction, File Transfer, and Emulation tools for use
with the Communications Toolbox
Control panel files (for organization only-control
panels can be opened anywhere)
Information about the icons appearing on the
desktop; this file is invisible.
Software that provides system-wide functionality,
including INITs and printer drivers
Preferences files created by any application
Temporary files created when printing

Items that were located in the Temporary Items folder
the previous time the system was booted. Since
applications normally remove items from the
Temporary Items folder, the existence of this folder
indicates that a system crash occurred. The user can
choose to delete these temporary files or try to
recover their data.
Items that should be opened every time the system
starts
Note that this file also contains the basic system
software, but behaves as a folder with respect to
fonts, sounds, and other moveable resources.
Temporary files created by applications; this file is
invisible to users
Items that the user has moved to the trash icon.

When you copy a file to the System Folder, the Finder attempts to figure
out to which of these special folders (if any) the file belongs. Before mov
ing the file into a special folder, the Finder will ask you to confirm its
choice .

.,. Font /DA Mover

With the new System Folder architecture, the FontjDA Mover has been
retired. This application, which was used to install fonts and desk acces
sories into the System file, had a complex, cumbersome interface that was
also difficult for many users to understand. Fonts are now installed by
moving the suitcase file into the System file in the System Folder. The

0
16 items

LID
System

LiJ
Apple Menu Items

~
L.2.:::J

Pxefexemes

rn
I~

Find ex

..,. Aliases 23

System Folder -

17.4MB in disk 20.6 MB available

~ D rQgJ
Clipboaxd Note Pad FileScxapbookFile

LillJ
Staxtup Items

~
Conhol Panels

Figure 2-4. The new look of the System Folder

fonts are immediately available. Double-clicking on a font icon brings a
window displaying information about the font. Sounds are installed in a
similar manner. Double-clicking on a sound icon plays the sound.

Desk accessories can be located anywhere on a disk. You can open a
desk accessory by double-clicking on it, just as you would an application.
DAs that are in the Apple Menu folder appear in the Apple menu, but
there is no longer any reason why they cannot be kept in other locations.

Clearly, desk accessories have not disappeared with System 7. There is
no longer much reason to write something as a desk accessory though.
DAs are harder to write than applications, primarily because they impose
more restrictions on what you can do. Small applications make even more
sense now. DAs \-vill gradually fade away, but only because better meth
ods of accomplishing the same thing are now available .

...,.. Aliases
Aliases allow you to create a sm all file that " points" to the original file.
You use aliases to put a file (or any other desktop object) in more than one
place. For example, you might create an alias of an application so that you
can put the alias in the Apple Menu folder. The original application can
remain in a folder elsewhere, a long with all of its associated files. The
Finder displays aliases in italics so that they can be easily distinguished
from all other files. When you open the alias, the Finder actually opens
the original, no matter where it is located.

24 ~ Chapter 2 The Finder

Another use for aliases is to simplify complex arrangements of volumes
and folders. If you create an alias for a file on a file server, then opening
the alias will log you onto the file server, and then the original file will be
opened.

If you delete an alias, you will not delete the original file. If you delete
the original file, the alias will still point to it. The next time you attempt to
use the alias (open it, for example), you' ll get a warning message .

.,... File Sharing

File Sharing provides a file server capability in any Macintosh. The serv
ices are the same as those provided by the full AppleShare file server
software, but File Sharing is sufficient for small groups (less than a half
dozen people) . File Sharing is, however, lower in . performance than
AppleShare.

You can control whether File Sharing is on or off using the Sharing
Setup control panel, as shown in Figure 2-5.

§0 Sharing Setup

1!21 Network Identity

0\otn~r Nam~ :

Ovrn~r Password : l••••
~====~------------~

Macin tosh Nam~: '-J T_o_ny"-'_s_M_a_c_in_t o_s_h _ _ ________ _.~

0 File Sharing
.~.
· · , status .. ,

[Stop) l Fil~ s hadng is on. Click Stop to pr~v~nt oth~r l
. . : us~rs from acc~ssing shar~d fold~t·s . : .. :

~ Program Linking
,. ... status .. ~

S t 0 P l Progr am linking is on. Click St op t o pr~v~nt oth~r l
l us~rs from linking to your shar~d programs. l .. :

Figure 2·5. The Sharing Setup contro l

.,.. File Sharing 25

When you've turned File Sharing on, you can let others use your
volumes or specific folders on volumes. Do this by selecting the object
and then using the "Sharing" command from the File menu. You are then
presented with a dialog that lets you specify who can access it and what
kind of access they can have (read only, read and write, and so on). This
dialog box is shown in Figure 2-6. To give access to a specific person or
group of people, you can create a new entry in the Users and Groups
conh·ol panel. This dialog box is shown in Figure 2-7.

Tony 's pictures

'W'here : HD:

~ Share t his item and its contents

See See Make
Folders Files Changes

O-wner-: I Ton~ M ·l [3J [3J [3J

User-/Group : l Bear sRivet- ·~ ~ ~ ~

Everyone [3J ~ D
~ 1"1ake a 11 enclosed folders like t his one

0 Can't be moved, t-enamed ot- deleted

Figure 2-6. Sharing a folder

26 IJJ. Chapter 2 The Finder

Diana

User Password : I xx 1 2aq

Ll File Sharing
:~:

~ Allo"Yt user to conned

~ Allow user t o change password

Groups :

~ Program Linking

~ Allow other users to link to
programs on my Macintosh

Figure 2-7. Users a nd Groups control panel

~ Desktop Objects
Quite a few changes affect the objects on the desktop. Let's look at some
of them now: navigating the desktop, s tationery pads, and the Trash .

IIJ. Navigating the Desktop

In previous Finders, you could only navigate the desktop using the
mouse. Now you can also use your keyboard. The arrow keys move the
selection to the left, right, up, or down from the current selection. The
Command-up arrow opens the parent folder, and the Command-down
arrow opens the selected folder. The Command-Option-up arrow opens
the parent folder and closes the current folder. The Command-Option
down arrow opens the selected folder and closes the current folder.

~ Virtual Memory 27

The Tab key moves to the next icon alphabetically. The Return key opens
the selected icon's name for editing, and the Enter key closes it. Any other
keys entered select the icon whose name begins with those letters .

..,_ Stationery Pads

A stationery pad is a special document. You can make any document into
a stationery pad by checking the s tationery pad box in the document's
Get Info dialog box. When you open a stationery pad, you will get an
untitled window whose contents are the same as the stationery pad's. You
can use stationery pads to simulate forms using most applications.

Applications need a small amount of code to support stationery. If this
isn' t there, the Finder simulates it by duplicating the stationery pad and
opening the untitled copy .

..,_ The Trash

The Trash behaves differently in several respects than it did before. For
instance, the Trash is emptied only when you explicitly empty it. The
system doesn' t empty the Trash automatically when you start an applica
tion or shut the computer down. You can choose whether the Finder
should warn you when you empty the Trash by selecting the Trash and
using the "Get Info ... " command.

The Trash now appears as a folder on the desktop when you' re using
the standard file dialogs. This is more consisten t behavior than the previ
ous implementation .

..,.. Virtual Memory
Virtual memory (VM) substitutes disk space for (RAM) memory. The pro
cess of simulating memory with disk space must happen quickly. In prac
tice, this means a lot must happen in hardware, and only some
Macintoshes have the required hardware. Macintoshes that have a mem
ory management unit can use this feature. Basically, a Macintosh with a
68020 CPU chip and a 68851 PMMU chip or with a 68030 or 68040 CPU
chip can run virtual memory. Machines with a 68000 CPU chip or a
68020 CPU chip without a 68851 PMMU chip cannot run virtual memory.

If you can run VM on your machine, you need only buy sufficient RAM
for your average needs. If you need to run one more application beyond
what your RAM will support, you can run it using VM. Your system will
not run as fast as it would if you had more RAM, but in many cases you
may not notice the difference in performance.

The Memory control panel, shown in Figure 2-8, lets you control

28 .,.. Chapter 2 The Finder

whether VM is on or off. You' ll need to restart your machine for this
change to be made. You can also control how much VM you use. You'll
need as much free space on a volume as the total amount of memory you
want (not the amount of virtual memory).

0

~
8

v l .O

Disk Cache
Always On

Virtua 1 Memory

@on
Q Off

Memory

Cache Size I128K I riD

Select Hard Disk :

I E:J HD
Available on disk : 9M

Total memory: 6M
After restart L.;IB;.;.M..;.____,

(Use Defaults J

~I

Figure 2-8. The Memory contro l panel

...,. Conclusion

Get Info ..,.

In this chapter, you've looked at the new Finder. This Finder, which was
completely rewritten for System 7, looks similar to previous versions of
the Finder while offering numerous improvements in its interface.

The changes listed in this chapter are not all the changes in the new
Finder. Apple has rethought the Finder interface quite thoroughly, so you
will find some of them only after you've been using it for a while.
Unquestionably, the Finder is a lot easier to use.

For more information about the changes to the human interface
guidelines, refer to the user documentation distributed as part of
System 7. The Finder is not documented in Inside Macintosh,
Volume VI, except for certain programmer-level concepts.

3 The Human Interface
Guidelines

..,. Introduction

The success of the Macintosh is due in part to the human interface guide
lines. These guidelines, which were introduced with the first Macintosh,
were quickly supported by the user community and the trade press. Any
arbitrary deviations from the guidelines were punished by both users
(who tended to buy other products) and the press (who gave lower rat
ings for nonconforming software).

In this chapter, you will look at the changes that System 7 brings to the
Macintosh human interface guidelines. Actually, some of these changes
are not new with System 7-programmers have been informally follow
ing them for some time, but only now have these changes been docu
mented. The changes fall into four categories: color, menus, windows,
and dialog boxes. You will learn about each of them in tum.

Another important aspect of the human interface guidelines is support
for other languages. This aspect of interface design is discussed in more
detail in Chapter 9, which covers text and international services .

..,. Color and Interface Design
The interface for System 7 uses much more color than any previous ver
sion of the operating system. Apple has used color to help users work
more effectively, not simply to draw attention to the interface.

29

30 ..,. Chapter 3 The Human Interface Guidelines

In System 7, you can use color in the following ways:

• Colored scroll bars, close box, zoom box, size box, and thumb and
arrow buttons in windows and dialogs

• Color window frames that become a shade of gray when in the
background

• Gray racing stripes and scroll bars

Users can change some of these colors using the new Color control
panel.

You'll first look at some general guidelines for using color. Following
the general guidelines, you'll look at the new kinds of color icons. Then
you'll look at several new types of icons that you may choose to support
in your applications.

~ Guidelines for Using Color in the Interface

Your applications should use color in the same way as the system soft
ware-to aid the user, not to distract him or her. Keep in mind that color
should not be used to convey important information, because not all
Macintoshes can display colors and because quite a few people are color
blind.

The technique for designing with color is to design first with black and
white. After you have a successful black-and-white design, then add color.
It is more difficult to design first in color and then convert the design to
black and white. Apple recommends that you use as few colors as possible
and preferably to use a 4-bit palette, since it can be used on more machines
than an 8-bit palette. Try to use light or subtle colors rather than bright
colors in most cases. This will reduce the clutter on the screen.

The apparent light source on the Macintosh screen is located beyond the
upper left-hand corner of the screen. Keep shading consistent with this.

~ Icons

The Finder now supports several new kinds of icons. Your application can
provide not only the standard 32-pixel by 32-pixel black-and-white icon,
but also the following types of icons:

• 16-pixel by 16-pixel black-and-white icon
• 32-pixel by 32-pixel 8-bit color icon
• 16-pixel by 16-pixel 8-bit color icon

.,.. Color and Interface Design 31

• 32-pixel by 32-pixel 4-bit color icon

• 16-pixel by 16-pixel 4-bit color icon

If no small icon is provided, the Finder uses an algorithm to create a
small black-and-white icon as before. If you provide your own small icon,
you can create a better-looking icon.

The Finder uses the appropriate type of icon. Whether it uses the black
and-white icon, the 4-bit color icon, or the 8-bit color icon depends on the
current settings for the monitor on which the icon(s) will be displayed.
Whether it uses the large or small icon depends on the current context
and user options. Note that only one mask is used for each size of icon;
that is, the same mask is used for all three 32-pixel by 32-pixel icons. A
smaller mask is used for all 16-pixel by 16-pixel icons. The mask is used in
conjunction with icons by the Finder to indicate when a file is selected,
open, or both selected and open.

When designing your icons, design the black-and-white icons first;
then colorize the icons. The color icons sh ould resemble the black-and
white icons, or your users will get confused .

...,. New Kinds of Icons

The changes in System 7 also affect the kinds of icons that your applica
tion uses. In addition to icons for documents, you may wish to provide
new icons for the following kinds of files:

• Stationery-A stationery file behaves like a regular document file,
except that when opened, it is transformed into an untitled docu
ment

• Edition file-For use when your application publishes an edition
file

• Query document-For storing a Data Access Manager query as a
document

The Finder has default icons for all three types of files shown in Figure
3-1. These default icons are used if your application does not provide its
own icons.

Q
Figure 3-1. Default icons for stationery, edition, and query files

32 .,. Chapter 3 The Human Interface Guidelines

..,.. Menus and Interface Design
System 7 brings several new managers to the operating system. Some of
these managers directly involve users in their activities, and so provide
several new standard menu commands. You should add these commands
to your application's menu bar only when appropriate. Let's first look at
the new standard menus and then at pop-up menus .

...,. New Standard Menu Commands

If your application uses the Data Access Manager, which is described in
Chapter 10, you should add an "Open Query" command to the File menu.
This command opens and executes a query document.

If your application uses the Edition Manager, which is described in
Chapter 7, you should add a set of commands to the Edit menu. These
commands should follow the cutjcopy / paste set of commands and be
separated from them by a gray line. The new commands for supporting
the Edition Manager are "Create Publisher ... ," "Subscribe To ... ," "Pub
lisher/Subscriber Options . .. ," "Show / Hide Borders," and (optionally)
"Stop All Editions ... ".

TrueType, which was introduced with System 7, provides bitmap fonts
in arbitrary sizes. These bitmaps are generated from an algorithm and can
therefore be provided in arbitrary sizes. TrueType is described in Chapter 8.
Therefore, because the limitations of previous types of fonts no longer hold
in all cases now, any restrictions that your application places on font sizes
should be eliminated, or at least relaxed. Users should be allowed to specify
an arbitrary (integral) font size. Fonts can now be larger than 127 points in
size, so you can eliminate the size limitation when appropriate.

If your application provides help beyond the Help Manager, move your
applica tion's Help command to the Help menu. Users can then find all
help under a single menu .

...,. Pop-up Menus

The appearance of pop-up menus has been improved with the addition of
a downward-pointing arrow. This arrow clearly distinguishes pop-up
menus from editable-text fields. Figure 3-2 illustrates a pop-up menu with
this arrow.

In some cases, pop-up menus should support user-specified values.
With such a pop-up menu, the user can either select a standard value or
type in another value. The nonstandard value should be displayed as the
first item in the pop-up menu, and it should be separated from the stan
dard values by a gray line.

~ Dialog Boxes and Interface Design 33

laserWriter Page Setup 7.0 ([OK D
Paper: 0 US letter 0 A4 Letter ~

0 US Legal 0 85 Letter ® J Enuelope ... ,.. I [Cancel]

Reduce or illmll%
Enlarge:

Orientation

Printer Effects:
[8] Font Sub stitution?
[8] TeKt Smoothing?
[8] Graphics Smoothing?
[8] Faster Bitmap Printing?

Figure 3-2. System 7 version of the pop-up menu

..,. Windows and Interface Design

[Options]

Handling windows is more complex now because many different monitor
sizes are available and because some Macintosh systems support the con
current use of multiple monitors. System 7 brings revised guidelines for
handling windows.

If reasonable, save and restore the position, size, and state of document
windows. When users reopen a window, though, you may need to adjust
these values to ensure that the window will fit onto the current monitor.
For example, a user might create a document using a large monitor at
work, then save the document and bring it home. When she opens the
document on her Macintosh Classic at home, she should expect to see the
document on the screen, regardless of where the document was posi
tioned or sized at work.

You need to interpret the zoom box carefully because of the variety of
monitor sizes. Remember, the zoom box toggles the window size between
the window state the user has created and a " full" or standard state.
When zooming to the standard state, use the screen wisely. Displaying a
word processing document by using the entire screen of a large monitor is
not useful. Documents have a na tural width, and they should be dis
played in a window appropriate to that width.

If the user has multiple monitors and the user opens more windows,
the added windows should be displayed on the current monitor. This is
not necessarily the monitor containing the menu bar .

..,. Dialog Boxes and Interface Design
System 7 brings two new features to dia log boxes: movable modal dialogs
and keyboard navigation. These two changes make dialog boxes more
usable. The other changes with respect to dia log boxes are changes to the
human interface guidelines.

34 1111- Chapter 3 The Human Interface Guidelines

...,. Movable Modal Dialog Boxes

By the Way.,..,

Movable modal dialogs were introduced because modal dialogs often
obscure so much of the underlying window. On many occasions, a user
would like to move the dialog box to see some portion of the window
below. A movable modal djalog looks like a modal dialog box with a title
bar above it. It does not have a zoom box or a close box. Figure 3-3 illus
trates a movable modal dialog box from the Finder.

Find

Find: j MacAp~

(More Choices) (Cancel) [Find l
Figure 3-3. A movable modal dialog box from the Finder

A modal dialog is a dialog that the user must dismiss before any
thing else can be done. All mouse and keyboard events are proc
essed by the dialog box until it is dismissed. This means, for
example, that you cannot click on another window to bring it to
the front. A modeless dialog behaves like a window in that it can
be moved and will be sent into the background if the user clicks
on another wjndow.

These new dialog boxes behave like nonmovable modal dialog boxes,
except that the user can drag the dialog box around using the title bar.
Apple, however, recommends several changes. When using a movable
modal dialog, you can allow your application to switch to the background.
Obviously, you won't allow the user to bring another window from your
application to the front-that's the pmpose of a modal dialog box.

Apple further recommends that movable modal dialogs allow the user
to access the Edit and Help menus. By allowing use of the Eilit menu, the
user can cut, copy, and paste into text fields. By allowing use of the Help
menu, the user can more easily get help.

..,. Dialog Boxes and Interface Design 35

~ Keyboard Navigation in Dialog Boxes

For the most past keyboard navigation in dialogs has allowed access only
to text-editing fields until now. On occasion, you 'd like to use the key
board in other places in dialogs, especially for scrolling lists. The standard
file dialog box displayed when the user selects the "Open ... " command
allows keyboard navigation. By typing one or more letters, the user scrolls
the list of files to the file that begins with those letters. However, the
standard file dialog box displayed when the user selects the "Save As ... "
command has not allowed such keyboard navigation.

With the advent of System 7, keyboard navigation into scrollable lists is
now encouraged by the guidelines. The latest version of the Standard File
Package and the Chooser provide two examples of this feature. You
should indicate that a scrollable list is the current item by drawing a rec
tangular border around it. (If an editable-text field is the current item, the
blinking cursor provides feedback to the user.)

Speaking of the standard file dialog, System 7 brings many changes to
it as well. The button previously named Drive is now named Desktop. By
pressing this button, the user is presented with a list of all volumes and all
files on the desktop. The Trash can appears as a folder on the desktop in
these dialogs, just like any other folder. A new button, titled New Folder,
allows users to first create a folder and then save the document. The pro
grammer-level details of the new Standard File Package are described in
Chapter 18.

~ Changes to the Macintosh Human Interface Guidelines

Ideally, you should label buttons with a verb describing the action that
will be performed should the button be pressed. Map the Return and
Enter keys to the default button, which is the button that provides the
most likely response or the safest result. Note that the most likely
response is not necessarily the same as the safest result.

Whenever appropriate, provide a Cancel button. The Escape key and
Command-period should be mapped to this key. Cancel should mean
"return to the state prior to this dialog box." If the user presses the Cancel
button, no side effects should occur. Therefore, if you are considering a
Cancel button, but it won't have this meaning, name the button differ
ently. Stop, Revert, and OK are examples of other labels that might prove
useful.

Modal dialogs should provide feedback so that the user can see the
changes. You cap do this either by updating the document or by providing

36 IJI> Chapter 3 The Human Interface Guidelines

an example in the dialog itself. Apple recommends that you do not use an
Apply button, because it combines the meanings of both OK and Cancel.

Simple dialog boxes, such as alerts, should be consistent with the recom
mended spacing of elements as described in the User Interface Guidelines
chapter of Tnside Macintosh, Volume VI. The Action button should be
located in the lower right-hand corner, with the Cancel button to its left.

In dialog boxes for saving all changes, Apple recommends that the
most dangerous button be placed on the left-hand side of the box, aligned
with the message text. In this way, the user has to move the mouse more
to reach that button than the safer options .

..,_ Conclusion

Get Info ..,.

In this chapter, you've looked at the improvements to the human inter
face guidelines that System 7 has brought. The changes come in four
categories: color, menus, windows, and dialog boxes. Apple has put a lot
of thought and effort into improving the guidelines, as the new Finder
clearly demonstrates.

For more information about the changes to the human interface
guidelines, refer to the User Interface Guidelines chapter in Inside
Macintosh, Volume VI. This chapter includes color illustrations,
which are helpful in understanding the guidelines for using color.
For information about the basic Macintosh human interface guide
lines, refer to Human Interface Guidelines: The Apple Desktop Inter
face (Addison-Wesley, 1987). This book was written by the Human
Interface Group at Apple, and it should be read by every Macin
tosh programmer. If you 're involved with developing Macintosh
software, you should have a copy of it on your bookshelf.

If you are writing user documentation, you should also have a
copy of the Apple Publications Style Guide. This document, which
is available from APDA, contains all the standard Macintosh ter
minology that you should use in documentation. Just as the Mac
intosh interface has a set of guidelines, this book documents the
terms for all Apple user documentation. (Most other companies'
Macintosh documentation also uses these terms.) If you use a com
mon set of terms in documentation and avoid technical jargon,
users will have less trouble reading documentation because they
will already be familiar with many of the terms.

4 The Installer

..,. Introduction
In this chapter, you'lllook at the la test version of the Installer, a standard
system utility used by Apple to install new versions of the operating sys
tem, as well as code and resources for printing and networking. Some
application developers also use the Installer, especially for software that
cannot be trivially installed by copying files. Version 3.2 of the Installer
ships with System 7.

The latest version of the Installer offers t\·vo levels of usage: a one
button mode, in which the Installer figures out what to insta ll by using
rules stored in the Installer script, and an expert mode, where the user can
manually select what software will be installed. You' ll first look at how to
write Installer scripts. Then you' ll look at how to customize the Installer
by adding your own splash screen and by writing external code modules
for the Installer application. The dialog for the one-button install option
for System 7 is shown in Figure 4-1. The dialog for the complex install
option is shown in Figure 4-2.

The new Installer provides two new important capabilities. First, it can
install to the active system. This process, known as a "live" install, simpli
fies the installation process for users. This capability also means that there
is no need to ship a boatable disk with your software. Second, a user can
run the Installer from an AppleShare server. The Installer can also use
files located on an AppleShare server.

37

38 ~ Chapter 4 The Installer

Easy Install
j"'""''"""'"'' .. ~····~··-····-······ .. ····-· - ... ,.,_,,_,, .. ,,,,,_ ,,, 1

! Click Install to update to Uersion 7.0 of !
i i
I • Macintosh II System Software I

I • LaserWriter Printing Software I
! • AppleS hare n Install D I
: • FileShare 1

I on the hard disk named I
l.. ~ ~.~J

3.2
Help

(1: j<H t Ois~)

(Switch Disk)

(Customize)

Quit

Figure 4-1 . The one-button Install dialog fo r System 7

Click the items you want to select;
Shift-click to select multiple items.

System Software for any Macintosh
Software for all Apple printers

····-···-·-··-···-·····-···-····-···-········-····-···--···-····-···-····-····-··-·····-····-····-··· ~

m:~:;: ::: ~:::::£~:~~.,w,; .. , sc 1
Software for AppleTallc lmageWriter 0

Figure 4-2. The optional Install d ialog for System 7

lns1<lll

c:::~ HD

l:jt~t:1 rH~k

(Switch Disk)

(Easy Install)

Quit

Note..,.

II> What the Installer is Really Doing 39

These two capabilities can reduce the administrative burden of
installing software at sites with many Macintoshes.

The Installer provides a complex case s tudy in how to take advantage
of the Resource Manager. Several levels of resources can refer to other
resources in Installer scripts. Installer resources are complex, but the tasks
the Installer must accomplish are sometimes complex too.

~ Using the Installer
The user has two ways to use the Installer: Easy Install or Custom Install.
If the user selects Easy Install, then the Installer uses a set of rules in an
Installer script to decide exactly what will be installed. You can write rules
that can install different resources depending on which Macintosh the
user is running on, for example. The standard Easy Install script for Sys
tem 7 does this, instead of forcing users to select from a rather cryptic list
of software to install.

If the user wants to conh·ol what software will be installed, then h e or
she presses the Custom Install button. This button presents a list of soft
ware to install. The choices for System 7 include a minimal system for
each member of the Macintosh family, EtherTalk software, printer soft
ware, File Sharing, and so on. You cannot write rules to control the
custom installation process.

~ What the Installer is Really Doing
Whether the user selects Easy Install or Custom Install, the Installer will
operate from a script. A script is a binary file containing resources unique
to the Installer. Script files are built from a textual description of the script
using the Rez MPW tool.

~ Developing an Installer Script

The Installer follows a script when installing software. You write the
script that tells the Installer what to do. The process of developing
Installer scripts is illustrated in Figure 4-3. You start by creating a textual
description of the script, perhaps using MPW. Rather than starting from
scratch, you may find it easier to use another script as a base. Using
MPW's DeRez tool, you can always create an .r file from another script.

40 .,.. Chapter 4 The Installer

(Editor J\) Rez (MPW)
ScriptCheck

J (MPW)

Installer
Script.r

Script Development Installer --- - -- ---- Script ----
Script Use

\
Installer

Figure 4-3. The development process fo r Installer scripts

After you've edited your script, run it through the RP.z tool. This tool
compiles the textual description of the resources and produces a file that
matches the description. If Rez reports any errors, you should fix them
before proceeding.

Following this, you'll run the script against the ScriptCheck MPW tool.
This tool serves two purposes. First, it completes the script by handling
some of the more tedious aspects of script writing. Examples of this
include filling in the size fields of the Installer resources and recording file
creation dates. Second, it checks for consistency and logic errors. This tool
reports three levels of potential problems. Notes are the least severe and
may not be problems; Warnings are the next category; and Errors are the
most severe problems. You can also use ScriptCheck to remove any
unused script resources in the script fil e. ScriptCheck also compares the
disks that will be distributed to users against their Installer scripts .

..,.. The Organization of an Installer Script
The Installer uses several kinds of resources. Before looking at the details
of these resources, let's look at the way in which these resources, and
therefore scripts, are organized. The relationship between the compo
nents of an Installer script is illustrated in Figure 4-4.

At the lowest level are atoms, of which there are five kinds: file atoms,

..,. The Organization of an Installer Script 41

Figure 4-4. The components of an Installer script

resource atoms, action atoms, audit atoms, and boot block atoms. A file
atom specifies a file to be copied or deleted. A resource atom specifies a
resource from a particular file to be copied or deleted. An action atom is
an external piece of code that can be executed as part of the installation
process. An audit atom contains historical information about what has
been installed. A boot block atom describes boot block parameters that
should be changed or preserved, and when boot blocks sh ould be written
as part of the installation process.

Atoms are collected into packages. Actually, the documentation refers to
packages and subpackages, but they are the same thing: a collection of
atoms and other packages. In this chapter, I will refer to both packages
and subpackages simply as packages. Use packages to collect rela ted
atoms to simplify the script. Users who choose Custom Install are actually
installing packages. In Figure 4-4, notice that Package 4 is contained in
Package 3. An atom or package can be contained in more than one pack
age. In Figure 4-4, notice that one file atom is contained in both Package 2
and Package 3.

Packages are visible to users in the custom installation process. Atoms
are not visible to users.

Packages and atoms can be managed by ru les. Rules govern how the
installa tion process happens when the user selects Easy Install. You can
only have one set of rules per Installer script. If the script has no rules,
then the user cannot use the Easy Install process.

42 ..,. Chapter 4 The Insta ller

~ Installer Resources
Now that you understand how a script is organized, let's look at the
details of scripts. Installer version 3.0 introduced a new series of resources
that replace the 'insc' resource used by previous versions of the Installer.
Let's look at these resources one at a time .

..,. The 'inrl' (Rule) Resource

The rules that the Installer uses during an Easy Install are specified in
resources of type 'inrl'. The goal of the set of rules in a script is to generate
a lis t of packages to install and to generate an informative message for
users of the script.

Rules look like if-then statements in programming languages. For
example, "if the current machine has an Ethernet card, then install the
EtherTalk software." Rules are composed of clauses. The two kinds of
clauses are conditional and generative. A conditional clause specifies a
condition that must be met. A generative clause adds to either the list of
packages to be installed or the user message. The various types of clauses
are listed in Table 4.1. All clauses with a prefix of check are conditional
clauses, and all clauses with a prefix of add are generative clauses . A third
type of clause, reportError, allows your script to alert the user to any
problems.

Table 4-l . The types of c la uses a llowed in Insta ller rules

Clause
check Gestalt

checkMinMemory

checkFileDataForkExists
checkFileRsrcForkExists
checkFileCon tainsRsrcBy ID

checkFileCon tainsRsrcBy Name

Parameters
Gestalt selector,
list of acceptable
return values
Amount of memory
(in Mb)

File specification
File specification
File specification,
resource type,
resource ID
File specification,
resource type,
resource name

Returns TRUE If:
Gestalt returns a value from
supplied list

Amount of memory on current
machine is ~ minimal amount
specified
File exists and has a data fork
File exists and has a resource fork
File exists and has a resource of
specified type and ID

File exists i;lnd has a resource of
specified type and name

.., Installer Resources 43

Table 4-1. The types of clauses allowed in Installer rules (continued)

Clause
checkFile Version

checkFileCountryCode

checkTgtVoiSize

checkATVersion

check User Function

addAssertion

checkAIIAssertions

checkAn y Assertions

checkMoreThanOneAssertion

addUserDescription

add Packages

reportError

addAuditRec

checkAuditRec

checkAny AuditRec

Parameters
File specification,
minimal version

File specification,
country code

Minimal size,
maximal size

Minimal version

User function type
and ID

List of 1 or more
assertions

List of 1 or more
assertions

List of 1 or more
assertions

List of 1 or more
assertions

String

List of package IDs

String

File specification,
selector, value

File specification,
selector, value
File specification,
selector, list of
acceptable values

Returns TRUE If:
File exists and has a 'vers' resource 2
minimal version

File exists and country code in 'vers'
resource equals specified country
code

Selected volume has more than
minimal space and less than maximal
space; (0,0) matches any disk, (x>O,O)
requires a minimum only

AppleTalk version is 2 specified
version

Extensibility hook; you can create
your own functions to check other
things and it returns TRUE or FALSE

Always TRUE; used to set assertions
to TRUE

All assertions are TRUE

At least one of the assertions is TRUE

More than one of the assertions
is TRUE
Always TRUE; used to add to the text
that will be shown in the Easy Install
dialog
Always TRUE; used to add a set of
packages that will be installed with
Easy Install

Always TRUE; used to display string
to user in a caution dialog box

Always TRUE; used to add an
Installer audit record with the
specified selector and value to the file

File has an audit record with the
specified selector and value

File has an audit record with the
specified selector and one of the
specified values

44 ..,. Chapter 4 The Installer

The clause called checkUserFunction provides one way of customizing
the Installer. Although the variety of clauses is quite broad, the standard
clauses do not cover everything. You can use checkUserFunction to write
a procedure that returns TRUE or FALSE to check on whatever you need.

A rule returns a logical value equal to applying the AND operator to the
results of all the clauses in the rule together. A rule is said to "fire" if
every clause returns TRUE .

...,. The 'infr' (Rule Framework) Resource

Resources of type 'infr' are used to describe a rule framework . A rule frame
work forces the rules specified in 'inrl' resources to be evaluated in a par
ticular order. The Installer walks through the rule frameworks in order of
resource ID. Each rule framework contains an ordered list of rule IDs and
a command either to evaluate the list of rules until one of the rules fires,
or to evaluate all the rules in the list.

...,. Assertions

Assertions provide a way of saving state information, that is, of saving the
results of rules that have fired. You can use assertions to simplify a script.
To use an assertion, you must first define a unique symbol. Then set an
assertion by using the addAssertion clause in a rule. You can test if an
assertion is set by using either the checkAllAssertions or checkMore
ThanOneAssertion clause .

...,. The 'inpk' (Package) Resource

Resources of type 'inpk' are used to describe packages. A package is a set
of one or more atoms and packages. Packages that have their ShowsOn
Custom bit set in their resource are listed in the Custom Install dialog.
They are displayed in the same order as their resource IDs.

lf a package has its Removable bit set in its resource, then the Installer
will permit the user to remove the package. If you hold down the Option
key when the Custom Install dialog is displayed, then the Install button
will change to Remove. If you do make a package removable, be careful
of unwanted side effects. For example, your application might require a
font to be installed that could also be used by some other application.
Your script cannot assume that it is safe to remove that font because
another installer script may also have installed the font.

The package resource contains a name that is displayed in the list of

liJI> Installer Resources 45

packages in the Custom Install screen. The core of the 'inpk' resource is a
" parts" list, which contains the resource type and ID for each component
of this package. A package can contain any number of each of the five
types of atoms as well as other packages. The package resource also con
tains a resource ID for an 'icmt' resource. The 'icmt' resource contains a
comment that will be displayed when this package (and this package
only) is selected by the user.

~ The 'info' (File Atom) Resource

Resources of type 'infa' are used to describe file atoms; that is, files that are
to be copied or deleted during the installation process. One 'infa' resource
is required per file.

The 'infa' resource contains flags specifying if the following conditions
hold:

• The data fork of the source file will be copied (or deleted)

• The resource fork of the source file will be copied (or deleted)

• The copy operation should happen only if the target file already
exists (that is, if this is an update-only file)

• The copy operation should not happen if the target file already
exists

• The copy operation should not happen if the target file is newer
than the source file (you might use this flag for Preferences files)

• The target file should be deleted before the source file is copied

• The target file is removable when the user clicks the Remove
button

The 'infa' resource also contains the file specifications for the target and
source files. Actually, it contains resource IDs for 'infs' resources for those
files. Finally, the 'infa' resource contains a file size field and a description
field, the latter of which is displayed by the Installer when it is copied.

~ The 'inra' (Resource Atom) Resource

Resources of type 'inra' are used to describe resource atoms; that is,
resources that are to be copied or deleted during the installation process.
One 'inra' resource is required per resource.

The 'inra' resource contains flags equivalent to those of an 'infa'
resource, as well as flags for the following:

46 ..,.. Chapter 4 The Installer

• Use the name or resource ID to find the resource

• vVh ether the name should match

The 'inra' resource contains the resource type and source and target
resource IDs. The 'inra' also contains the file specifications for the target
and source files related to this resource. Actually, it contains resource IDs
for 'infs' resources for those files. Lastly, the 'inra' resource contains a
resource size field and a description field, the latter of which is displayed
by the Installer when it is copied.

If you are working with fonts, then be careful to specify them using
only 'FOND' resources, and not 'FONT' or 'NFNT' resources. The user
might otherwise end up with inconsistent font information. Specify the
font you want and the sizes you want in the name field only; don 't use the
resource IDs. For example, use

Palati ne 9 10 12 14

to copy the Palatino font along with the bitmap resources for the point
sizes 9, 10, 12, and 14. The Insta ller handles all of the associa ted font
resources automatically. All styles are copied automatically .

..,. The 'inaa' (Action Atom) Resourc e

Resources of type 'inaa' are used to identify a piece of code in the script file
that can be executed as part of the installa tion process. One 'inaa' resource
is required per piece of code. This code is executed \•.'hen the Installer has
completed all other activity, just before returning to the user.

The 'inaa' resource contains the resource type and resource ID of the code
to be executed. It also contains a description field that is displayed by the
Installer when the code is being executed. A pair of flags, actOnlnstall and
actOnRemove, cause the code to be executed when these flags are set.

..,. The 'inat' (Audit Atom) Resource

Resources of type 'inat' are used to describe audit atoms. These atoms can
cause resources of type 'audt' to be added to the target file. If the 'audt' of
that ID already exists, then its contents are overwritten with the new
value.

This resource provides a way to customize the installation based on the
options used for previous installations. You would use the checkAudit
Record or the checkAnyAuditRecord clause in your script to do th is.

The 'inat' resource contains the resource ID of a file specification ('infs')

..,. Installer Resources 47

for the target and an array of selectors and values. The selectors are usu
ally resource types, and the values are a 4-byte integer.

~ The 'inbb' (Boot Block Atom) Resource

Resources of type 'inbb' are used to describe changes that should be made
to the target volume's boot blocks. One 'inbb' resource is required for each
boot block parameter specified. You can change each field in the boot
blocks by specifying its new value.

You can also have a new set of boot blocks written to the target volume.
In this case, you would enter the resource ID of the 'infs' for the file con
taining the boot blocks.

~ The 'icmt' (Installer Comment) Resource

Resources of type 'icmt' are used to contain Installer comments. The
Installer displays these comments when the user has first chosen Custom
Install and has then selected one package to install. Installer comments
have four fields: a version release date, a version number, an icon (actu
ally the 'icmt' resource only contains a resource ID for an 'ICON'), and a
string. The resource ID of the 'icmt' is contained in the 'inpk' resource.

~ The 'infs' (File Specification) Resource

Resources of type 'infs' are used to specify files in a symbolic manner in
Installer scripts. These resources are used by rules and atoms to refer to
specific files.

The 'infs' resource contains the file type and creator, a creation date, and
a pathname. You can also use some flags to specify whether the file type
and creator of the specified file should match those in this resource and
whether the file should be searched for if it isn' t found at the specified path.

The pathname for a source file contains the complete pathname of the
file, starting from the volume on which the file exists. The pathname for a
target file contains a modified partial pathname, because the target vol
ume is not known until long after the script has been written. You can
specify the System Folder or one of the special folders in it by using a
pathname starting with special- followed by the resource type of the
folder. For example, to specify that the target is a file called MyPrefer
ences, which should be installed in the Preferences folder, you would give
the pathname as

special-pref:MyPreferences

48 ~ Chapter 4 The Installer

IJiJJ. The 'indo' (Disk Order) Resource

Resources of type 'indo' are used to specify the names and order in which
disks should be used in the installation process. By default, disks are
requested in the order in which atoms require them. With larger scripts,
you can make the installation process easier and less confusing by con
trolling the order in which disks are requested .

.,... Customizing the Installer
You have already seen two methods for customizing the Installer. First,
you can specify an action atom (a resource of type 'inaa') in a scrip t. This
will cause a code resource in the script to be executed after all the fi les and
resources have been copied and deleted by the Installer. Second, you can
write a user function that can be called in a clause in a rule. Such a func
tion returns TRUE or FALSE. You can also use a third method to custom
ize the Installer: Create a splash screen for a script.

IJiJJ. C reating a Splash Screen

A splash screen is a resource 'PICT' that is displayed when the Installer starts
executing a script. Create a 'PICT' resource by copying a picture drawn in a
paint or draw program to the clipboard. Start ResEdit, create a new file, and
paste from the Clipboard. Delete all resources except for the 'PICT'
resource. Change the name of this 'PICT' to Splash Screen. You can include
this file in your Installer script by using an include (Rez) statement.

.,... When to Use the Installer
Apple designed the lnstaUer because a tool with sophisticated capabili ties
was needed to install the system software. The Installer h as always
allowed users to update their system software without disturbing the
fonts, desk accessories, and other resources previously installed.

The Installer is not the only tool available for installing software. Stufflt
is an example of another software installation tool. These alternate tools
provide some form of file compression, which is their primary advantage.
On the other hand, none of them can install resources into a file. Neither
can they install desk accessories, INITs, fonts, and so on. When is the
Installer the better choice and when should you use another tool?

Use the Installer when your sofhvare package

• Contains files that must be installed in more than one folder

.,. Conclusion 49

• Contains resources that must be installed in one or more files
• Includes one or more desk accessories, drivers, INITs, sounds,

andjor fonts
• Should be installable across a network
• Should be installable live; that is, installable as the package is run

ning on the machine

Use another installation tool when your software package

• Is installed in a single folder
• Can be compressed to fit onto a single floppy disk

Don' t use any installa tion tool when

• Your software package includes only a small number of files that
all belong in a single folder

• All the files fit onto a single floppy disk

~ Conclusion

Get Info ..,.

In this chapter, you've looked at the new Installer. It is a much more
powerful and flexible tool than previous versions. You can customize the
Installer if you require something not yet supported.

For more information on the Installer, refer to the Installer Tech
nical Reference Guide, the Macintosh Installer ScriptCheck User's
Manual, and the Installer Script-Writing Hints & Tips.

5 Compatibility

..,.. Introduction
One reason why the Macintosh has gained (and maintained) popularity is
the high degree of compatibility between members of the Macintosh family
and between versions of the Macintosh operating system. This contrasts
with both MS-DOS and Windows, where many applications have required
major modifications to run on newer versions of these environments.

In this chapter, you'll first look at the Gestalt Manager. The Gestalt
Manager replaces the Environs and SysEnvirons system calls from ear
lier versions of the Macintosh operating system. The Gestalt call provides
all the features of these earlier calls and a lot more.

Next, you'll look at compatibility with AjUX, Apple's version of the
UNIX operating system. Almost all of the Macintosh operating system is
available under AjUX, and so almost all Macintosh applications should
be able to run in this environment. You'll learn how to make this happen.

Last, you' ll look at what it takes for your application to take best advan
tage of System 7. System 7 brings important new capabilities to the operat
ing system. Some of the capabilities will quickly become as ubiquitous as
cut, copy, and paste. You'll look at which capabilities are in this category.

The issue of providing support for other countries and other languages
in not covered in this chapter. See Chapter 9 for information on interna
tional services.

51

52 ._ Chapter 5 Compatibility

..., The Gestalt Manager
The Macintosh operating system becomes more complex with each
release, especially with System 7. The Gestalt Manager was added (start
ing with version 6.0.4) because programmers were having a difficult time
writing code to figure out whether a particular feature was available in the
operating system.

Trying to decide whether an operating system feature is present by
looking at the ROM version, the CPU type, or even the version of the
operating system is risky. Newer versions of the operating system can
patch new versions of system calls into older machines and older ROMs.
As new versions of the operating system are introduced after your appli
cation has shipped, some changes to the operating system can invalidate
the assumptions you made when writing your application. Gestalt, the
primary call in the Gestalt Manager, provides a way to figure out whether
an operating-system feature exists.

~ Calling Gestalt

Before you call Gestalt, you need to make sure that the system call is
implemented on the current machine. If you're using MPW version 3.2 or
later, you don' t have to worry about whether the Gestalt call is available.
This is because MPW adds some "glue code" to the libraries that handle
calls to Gestalt when running on versions of the operating system.

Gestalt is easy to call-you need to pass it a selector, which is a code for
the kind of information you'd like to know and the address of a long
integer for the results. Gestalt also returns an error code.

The two kinds of selectors are environmental and informational. Use
the environmental selectors to decide whether a feature is present. Table
5-llists all the environmental selectors available for use with the 7.0 ver
sion of Gestalt.

Table 5-l . Environmental selectors for Gestalt

Selector Name Selector
ges tal tAddressingModeAttr 'addr'
gestaltAliasMgrAttr 'a lis'
gestaltAppleEventsAttr 'evnt'
gestal tApple Talk Version 'atlk'
gestaltAUXVersion 'ajux'

Information Retumed
Addressing mode attributes
Alias Manager attributes
AppleEvents attributes
AppleTalk version
A/UX version, if present

Type
attributes
attributes
attributes
version
version

..,. The Gestalt Manager 53

Table 5-1. Environmental selectors for Gestalt (continued)

Selector Name Selector In[ormation Returned Tl[f!.e
gestaltConnMgrAttr 'conn' Connection Manager attributes attributes
gestaltCRMAttr 'crm ' Communication Resource Manager attributes

attributes

gestaltCTBVersion 'ctbv' Communications Toolbox version version

gestaltDBAccessMgrAttr 'dbac' Database Access Manager attributes attributes

gestalt D ITLExtA ttr 'ditl' Dialog Manager extensions attributes

gestaltEasy AccessAttr 'easy' Easy Access attributes attributes

gestaltEditionMgrAttr 'edtn' Edition Manager attributes attributes

gestaltExtToolboxTable 'xttt' External Toolbox trap table base address

gestal tFindFolder A ttr 'fold' FindFolder attributes attributes

gestaltFontMgrAttr 'font' Font Manager attributes a ttri bu tes

gestal tFPUType 'fpu' Floating-point unit type type

gestaltFSAttr 'fs ' File system attributes attributes

gestaltFXfrMgrAttr 'fxfr' File Transfer Manager attributes attributes

gestaltHardwareAttr 'hdwr' Hardware attributes attributes

gestal tHe I pMgrAttr 'help' Help Manager attributes attributes

gestaltKeyboardType 'kbd I Keyboard type type

gestaltLogicalPageSize 'pgsz' Logical page size size

gestaltLogicalRAMSize '!ram' Logical RAM size size

gestalt Low MemorySize 'lmem' Size of low-memory area size

gestaltMiscAttr 'mise' Miscellaneous information attributes

gestaltMMUType 'mmu' Memory management unit type type

gestaltNotificationMgrAttr 'nmgr' Notification Manager attributes attributes

gestaltNuBusConnectors 'site' NuBus connector bitmap attributes

gestal tOSAttr 'os' Operating-system attributes attributes

gestal tOSTable 'ostt' Operating-system trap table base address

gestaltParity Attr 'prty' Parity attributes attributes

gestal tPh ysicalRAMSize 'ram' Physical RAM size size

gestaltPopupAttr 'pop!' Popup CDEF attributes attributes

gestaltPowerMgrAttr 'powr' Power Manager attributes attributes

gestal tP PCTool box A ttr 'ppc' PPC Toolbox attributes attributes

gestal tProcessor Type 'proc' Processor (CPU) type type

gestaltQuickDrawVersion 'qd I QuickDraw version version

54 ~ Chapter 5 Compatibility

Table 5-l. Environmental selectors for Gestalt (continued)

Selector Name Selector Information Returned T!fl!_e

gestaltResourceMgrAttr 'rsrc' Resource Manager attributes attributes

ges tal tScriptCou n t 'scr#' Number of active script systems count

gestal tScri ptMgr Version 'scri' Script Manager version version
ges tal tSeria!Attr 'ser' Serial hardware attributes attributes
gestaltSoundAttr 'snd' Sound attributes attributes
gestaltStandardFileAttr 'stdf' Standard File Package attributes attributes
gestaltStdNBPAttr 'nlup' Standard Name Binding Protocol attributes

attributes
gestaltTerrnMgrAttr 'term' Terminal Manager attributes attributes
gestaltTextEditVersion 'te ' TextEdit version version
gestaltTimeMgrVersion 'tmgr' Time Manager version version
gestaltToolboxTabl
gestalt Version
gestaltVMAttr

'tbtt' Toolbox trap table base address
'vers' Gestalt Manager version version
'vm' Virtual memory attributes attributes

Table 5-2 lists all the informational selectors. These selectors should not
be used to answer questions like, "Does the current machine have a mem
ory management unit?" That's why the environmental selectors are pro
vided. Rarely, you may need to use the informational selectors for this
purpose, but this shouldn't happen often. Use the informational selectors
to retrieve information to display to users.

Table 5-2. Informational selectors for Gestalt

Selector Name Selector Information Returned Tyl!_e
gestaltMachinelcon 'mien' Machine icon icon
gestaltMachineType 'mach' Machine type type
gestaltROMSize 'rom' ROM size size
gestaltROMVersion 'romv' ROM version version
gestaltSystem Version 'sysv' System version version

The results returned by Gestalt are of a particular type. The result type
is described by a suffix on the selector name and is listed in the last col
umn of Tables 5-l and 5-2. The results should be interpreted according to
Table S-3. Note that the results might not use all four bytes. If this is the
case, then the lower-order bytes are used to store the results.

..,.. The Gestalt Manager 55

Table 5-3. Gestalt return types

ResultType ~In~t~e~rp~r~e~ta~t~io~n~------------------------------------
attributes The results should be interpreted as a string of bits. Each bit

must be interpreted individually, although not all bits are
used for a selector. Bit 0 is the least significant bit.

count The results are a count of how many of that item exist.
icon The result is a 32 x 32 icon.
size The results are the size of the value requested in bytes .
type The results are an index into a list of types.
version The results are a version number. The first two bytes are the

major version number, and the last two bytes are the minor
version number .

..,.. Modifying the Gestalt Manager

I By the Way ~ I

Two additional system calls are provided so that you can modify the
responses of the Gestalt Manager. You can change the response to an
existing selector or add a procedure to respond to a new selector. Most
applications will not need to do this, but certain classes of applications
will find these calls useful.

You can change the response to an existing selector by using the
ReplaceGestalt call. You need to pass the selector type and the address of
a function that will handle the selector. If this call succeeds, it returns the
address of the old selector function. You'll need this address if your new
selector function needs to call the old function or if you need to restore
the old selector function.

You can add support for a new selector by using the NewGestalt call.
You need to pass it the selector type and the address of a selector function.
If the selector is already supported by the Gestalt Manager, you'll get an
error. You'd use NewGestalt when you're writing an engine that provides
application-independent services. You could register the existence of
these services by using this call. You could also describe its attributes
using this call. This would provide a simple w ay to test for its existence,
the current version number, and the a ttributes of the service.

If you've registered your application's signature with Apple, you
can use your application's creator type as the selector type. Apple
has reserved for itself all sequences consisting of four lowercase
letters and all sequences of nonalphabetic characters.

56 ~ Chapter 5 Compatibility

..,. Selector Functions

A selector function takes a selector type and returns its results in a long
integer (whether or not all four bytes are required). Selector functions can
call other selector functions including, if you're using the ReplaceGestalt
call, a previous selector function. You can't use globals in the AS world
unless you specifically set them up and restore the previous values when
you're done.

Link the selector function into a 'GDEF' resource. The attributes for this
resource should specify that it should be locked and loaded into the sys
tem heap. Your code will need to intall the 'GDEF' resource into the sys
tem heap. An example of this is provided in the Compatibility Guidelines
chapter of Inside Macintosh, Volume VI. Note that once your selector
function is installed in the system heap, it will be there after your applica
tion quits until the machine is restarted. Your selector function should
handle this situation .

..,.. Running under A/ UX

A/UX is Apple's version of the UNIX operating system. A/UX version 2,
in addition to providing all the basic features of UNIX, provides several
features unique to Apple, such as a Macintosh-style window for the com
mand shells, MPW Commando-style interfaces to all the UNIX com
mands, and, most important, access to most of the Macintosh operating
system. The latter fea ture was a component of A/UX version 1.0, but
AjUX version 2 provides a high degree of compatibility with the Macin
tosh operating system.

Unless you have a good reason to avoid A/UX support, you should try
to ensure that your applications can run under A/UX. The market for
A/UX will be growing rapidly now that version 2 has been released. The
government and higher education are the two market segments expected
to accelerate A/UX's growth.

You have two ways to use the Macintosh operating system and Toolbox
under A/UX. First of all, most Macintosh applications can potentially run
under A/UX. They behave as they do under the Macintosh operating sys
tem. With version 2 of A/UX, several Macintosh applications can be run
simultaneously because a version of MultiFinder comes with A/UX. As it
turns out, you don't have to do much to most Macintosh applications to
make them compatible with A/UX. Let's look at the two aspects of AjUX
compatibili ty: the availability of components of the Macintosh operating
system under AjUX, and programming techniques to ensure compatibility.

.., Running under A/UX 57

Second, UNIX applications written specifically for A/UX can make calls
to the Macintosh operating system. This allows UNIX applications to pro
vide a Macintosh human interface that looks and feels like an application
running under the Macintosh operating system .

..,. Availability of the Macintosh Operating System
under A/UX

The version of the Macintosh operating system and Toolbox available for
use while running in the A/UX environment is known as the AjUX Tool
box. The A/UX Toolbox implements user-interface Toolbox calls primarily
by using the routines in the Macintosh ROMs. Calls to the Macintosh
operating system, as opposed to the Toolbox, are primarily emulated by
translating these calls into their UNIX equivalents. Fortunately, this pro
cess is transparent to application programmers.

The one aspect of using the Macintosh operating system that is not
transparent to application programmers is that not all of the calls are
available under A/UX. The availability of the various managers is
described in Table 5-4.

Table 5-4. Availability of managers under A/UX version 2

Availability
Full implementation

Manager
AppleTalk Manager
Binary-Decimal Conversion Package
Color Manager
Color Picker Package
Color QuickDraw
Control Manager
Desk Manager
Device Manager
Dialog Manager
Disk Driver
Disk Initialization Package
File Manager
Font Manager
Gestalt Manager
International Utilities Package
List Manager
Memory Manager
Menu Manager

58 ..,. Chapter 5 Compatibility

Table 5-4. Availability of managers under A/UX version 2
(continued)

AvailabilihJ

Full implementation (all calls
available), but the behavior
of the call may be differen t
than under the Macintosh
operating system

Partial implementation (most
calls available)

None

Mtwager

Notification Manager
Package Manager
Palette Manager
Printing Manager
QuickDraw
Resource Manager
Scrap Manager
Script Manager
Serial Driver
Slot Manager
Sound Manager
Startup Manager
Standard File Package
TextEdit
Toolbox Utilities
Window Manager

Event manager (Toolbox portion)
Floating-point arithmetic
Shutdown Manager
System Error Handler
Time Manager
Transcendental Functions Package
Event Manager (Operating System portion)
Segment Loader
Utilities, Operating System
Vertical Retrace Manager
Alias Manager
Apple Desktop Bus
Data Access Manager
Deferred Task Manager
Edition Manager
Help Manager
Power Manager
PPC Toolbox
SCSI Manager

It is important to remember w hen using the Macintosh managers under
A/UX tha t the version of the manager may be different from the latest
version of that manager available under the Macintosh operating system .
This leads to the next topic: programming for A/UX compatibility.

~ System 7-Aware Applications 59

~ Programming Techniques for A/UX Compatibility

By the Way ..,.

What do you have to do to ensure that your application can run under
AjUX? In addition to the standard programming techniques for compati
bility under the Macintosh operating system, five rules are especially
important:

1. Use the Gestalt Manager to check whether the versions of the
managers you want to use are available. Implementation of man
agers under A/UX is usually a version or two behind the Mac
intosh operating system.

AjUX version 2 provides managers equivalent to those available
under version 6.0.5 of the Macintosh operating system.

2. Make sure your code is 32-bit clean (see Chapter 16). A/UX is a
32-bit environment, so code that is not 32-bit clean will crash
under AjUX.

3. Make sure that your application is MultiFinder-friendly. Multi
Finder is running all the time under A/UX version 2, jus t as it is
under System 7. Therefore, you should be calling WaitNextEvent
and not GetNextEvent. You should also provide a 'SIZE' resource
to describe the application.

4. Avoid using low-memory globals. Some low-memory globals are
not supported a t all under A/UX. The use of low memory has
been discouraged by Apple for some time, but on some occasions
you h ave no choice but to read from or write to low-memory
globals when writing Macintosh applications.

5. Don't ta lk to hardware directly. Use managers and device drivers
to talk to hardware. A/UX uses memory protection, whereas the
Macintosh operating system does not. A/UX will not allow you to
talk to memory-mapped input/ output devices-your application
will crash if you try this .

.,... System 7-Aware Applications

System 7 allows three classes of applications: 7.0-compatible, 7.0-depen
dent, and 7.0-fri endly. An application is 7.0-compatib le if it can run under
System 7. The majority of current Macintosh applications fall into this

60 .,.. Chapter 5 Compatibility

category because they were developed using the Apple's programming
guidelines.

An application is 7.0-dependent if it requires System 7 or later. An appli
cation that requires the Data Access Manager would be 7.0-dependent
because this manager didn' t exist before System 7.

Finally, an application is 7.0-friendly if it takes advantage of certain new
features available with System 7. A 7.0-friendly application meets the
following conditions:

• Supports MultiFinder-Your event loop should use the WaitNext
Event call instead of GetNextEvent. This has not changed from
System 6, but MultiFinder is always running under System 7, so
now you must be compatible with MultiFinder.

• Supports the standard Apple events-lnterapplication communica
tion facilities are available under System 7, and Apple is strongly
encouraging all applications to support the high-level messages
known as Apple events. The Finder sends Apple events to Apple
event-aware applications to open and print files, for example. See
Chapter 6 for more information about Apple events.

• Runs under virtual memory- Most applications are not affected by
virtual memory, but a handful of applications may need to make
calls to lock data structures in memory to ensure reasonable per
formance. See Chapter 16 for more information about virtual
memory.

• Has no restriction on font size-System 7 introduces a new font
technology called TrueType, which is implemented in the Font
Manager and allows for arbitrary (integral) point sizes of fonts.
The older font technology required a bitmapped version of each
size for optimal display on the screen, but TrueType can generate a
version for any size in real time. See Chapter 8 for more informa
tion about TrueType.

Supporting some of these fea tures will require little or no work for most
applications. Other features will require more extensive work.

Applications that take the most advantage of System 7 are said to use
the " Magnificent 7." Such applications

• are 32-bit clean

• are MultiFinder-aware
• have no restrictions on font size

IJJ> Conclusion 61

• support the Edition Manager

• support the required and core AppleEvents
• provide Balloon help

• are AppleShare-aware

..,. Conclusion

Get Info IJo>

In this chapter, you've looked at three aspects of compatibility. First of all,
you looked at the Gestalt Manager, which provides a simple, standard
way of checking version numbers (of the operating system, of managers,
and so on) and checking whether certain operating-system features are
supported. By using the Gestalt Manager, you can be assured of compati
bility with future versions of the Macintosh operating system.

Next, you looked at what it takes to make an application compatible
with A/UX. For most applications, little additional effort is required
beyond following standard programming guidelines.

Last, you looked at what it takes to make an application 7.0-friendly.
Apple is encouraging all applications to support a subset of new features
introduced (or improved) with System 7.

For more information about 32-bit cleanliness, read Chapter 16 in
this book, the Memory Manager chapter, Inside Macintosh, Volume
VI, and Technical Note #212.

Read the Compatibility Guidelines chapter of Inside Macintosh,
Volume VI for more information about the Gestalt Manager.

For more information on Macintosh operating-system support
under A/UX, read AjUX Toolbox: Macintosh ROM Interface, which
is one of the manuals that comes with A/UX.

6 The PPC Toolbox, High-Level
Events, and Apple Events

~ Introduction
In this chapter, you' ll look at some new features of the Macintosh operat
ing system: Apple events, high-level events, and the PPC Toolbox. The
PPC Toolbox, which is the foundation on which these other services are
built, provides a set of low-level interapplication communications (lAC)
services. These services do not differ substantially in function from the
lAC services provided by other operating systems, such as UNIX. You'll
first look at what the PPC Toolbox is and how you can use it.

Next, you' ll move on to high-level events, which use the PPC Toolbox
for support and hide a lot of the plumbing. Because of this, you'll find
high-level events easier to use than the PPC Toolbox.

Last, you'll look at Apple events, which are a specific class of high-level
events. These events are being standardized, and many applications will
be using them. The Apple event protocols will be supported as widely as
are cut, copy, and paste by applications we have today.

~ The PPC Toolbox
The PPC Toolbox provides Program-to-Program Communications (PPC)
services- low-level services that are called interapplication communica
tions (lAC) services on other operating systems. You can use the PPC Tool
box to transfer data to and from other applications in real time. The pair of
communicating applications can reside on a single Macintosh or on two
Macintosh computers on a network. From a programmer's point of view,
it's as easy to use the PPC Toolbox over a network as it is to use locally.

63

64 ~ Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

~ PPC Terminology

The PPC services enable your software to communicate with other appli
cations through a port. A port has a name and a location: The port name
must be unique on its machine, and the port location identifies the
machine on the network. Each application that uses the PPC services must
start up a session with the other port involved. To do this, both applica
tions must have opened a port. Your application can send and receive
blocks of data to and from another port. The blocks of data have no stan
dard format.

The italicized words in the previous paragraph are technical terms you
should avoid in documentation for users. To avoid using computer jargon
in software and manuals, Apple recommends using the terminology listed
in Table 6-1.

Table 6-1 . Preferred user terminology for PPC Toolbox concepts

Programmers Say:
executable code
uses PPC Toolbox
PPC session
end a PPC session

In English:
program
supports program connections
program connection
disconnect the programs

~ Naming PCC Ports

Port names have two formats. The first format consists of a name string
followed by a type string, as in

MyDatabase,database

You must use a comma to separate the two strings. The second format
consists of a name string followed by a 4-byte Macintosh creator type and
the 4-byte port type (the latter is similar to file types, but applies to ports).

Port locations consist of an object string, followed by a type sh·ing,
followed by the AppleTalk zone. You must also use some special punctua
tion. An example of a port location is

TonyM:PPCToolbox@BearRiver

where TonyM is the object sh·ing (and is usually the owner name as entered
in the Sharing Setup control panel), PPCToolbox is the type string, and Bear-

~ The PPC Toolbox 65

River is the AppleTalk zone. This format is defined by Name Binding Proto
col (NBP), which is one of the protocols in the AppleTalk protocol suite.

Note 11> Future versions of the PPC Toolbox will have other formats for
location name. Another method of naming locations would be to
use a name server on the network. This would simplify the main
tenance of names and addresses, because you could look up an
address by knowing a user name. Users ce>uld then move from one
location to another without having to notify everyone of their new
network address. Apple has not discussed this alternative, but it is
an obvious direction to go in. Other networks and network operat
ing systems are heading in this directiqn .

...,. When to Use· the PPC Toolbox, When to Use Apple Events

You need to be aware of the tradeoffs in using the PPC Toolbox, on the
one hand, and high-level events and Apple events, on the other hand.
You should probably be using the PPC Toolbox when you're writing one
of the following:

• Something other than an application, such as a device driver

• A server that requires sharing resources across multiple sessions

• Code that is not driven by events

• Code that must run asynchronously

...,. Compatibility and the PPC Toolbox

Call Gestalt with a selector of gestaltPPCToolboxAttr to verify that the
PPC Toolbox is available and can support real-time delivery of messages.
(See Chapter 5 for more information on Gestalt) .

...,. Managing PPC Services

Each user has control over the usage of PPC services on his or her
machine. By using the Sharing Setup control panel (cdev), the user can
enable or disable the usage of network PPC services (and also Apple
events, which you'll learn about later in this chapter). The user cannot
control the local usage of PPC services.

66 ..,. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

When a remote user wants to use the PPC services of this user's Macin
tosh, the local user must enable these services. The local machine will
reject the session request from the remote user if the PPC services are not
enabled.

The local Macintosh must also authenticate the remote user. Authenti
cation means that the remote user must provide a user name and pass
word that correspond to an entry in the local Macintosh's Users and
Groups control panel. Each entry in this folder controls the access of a
remote user, although the folder has a default entry for "guests." This
default entry can allow nonregistered users to have some access to the
services on the local machine. If the remote user cannot provide an
acceptable user name and password, and cannot be signed on using the
guest account, then the session request will be rejected. Authentication is
not available for local use of the PPC Toolbox.

Important II> The maintenance of user names and passwords must be done
locally on each machine. System 7 has no provisions for a net
work-based name service, which would enable a network manager
to handle this burdensome task. Although this is in keeping with
the Macintosh way of doing things, large organizations may have
some problems maintaining access control.

..,. Calling the PPC Toolbox

Let's now look at the routines in the PPC Toolbox. Call PPCinit to initial
ize the PPC Toolbox. After making this calt you can call any of the other
PPC Toolbox routines synchronously or asynchronously. You should
make most calls to the PPC Toolbox routines synchronously. However,
you should usually call PPCinform, PPCRead, and PPCWrite asynchro
nously. This improves the performance of your software. When you do
call a PPC Toolbox routine, you'll need to pass the address of a completion
routine. The PPC Toolbox calls the completion routine when your call
completes, whether it was successful or not. You should use completion
routines to finish off whatever processing is required following the com
pletion of the ca ll.

Most PPC Toolbox calls require a parameter packet. The contents of the
parameter packet are different for each call. This chapter covers only
some of the parameters for each call. For the details, refer to the PPC
Toolbox chapter of Inside Macintosh, Volume VI.

The first time an application wants to communicate with another
application using the PPC Toolbox, the user will probably need to tell the

Important ..,.

.,.. The PPC Toolbox 67

application which other applica tion he or she wants to use. Call
PPCBrowser to present the user with a standard dialog box for this pur
pose. This dialog box shows the user a list of zones (if the user's Macin
tosh is located on an internet), a list of Macintosh computers, and a list of
applications. When making this call, you supply a prompt for the dialog
box, a title for the list of PPC ports (the default is Applications), and an
optional default PPC port. You can also supply a port filter function,
which this dialog will call for each PPC port before adding it to the list.
The filter function returns TRUE if the PPC port should be displayed in
the browser, and FALSE otherwise.

No standards exist for naming services now and there may never
be any. Therefore, beware of this when writing a filter function.
For example, port names and locations are case-sensitive. Names
and locations can also be in other scripts. (For more information on
scripts, see Chapter 9.)

For occasions when you don't need or want to present the PPC
browser, you should call IPCListPorts. This routine returns a list of all
ports visible to the network. You supply the maximum number of ports
that you want to look at and a pointer to a buffer that will hold the list of
names. You can also pass a template for the port names that you'd like. If
you pass NIL for this parameter, you' ll get a list of all the ports on the
local machine. By using the NBP metacharacters, you can get a list of all
the ports in your network, or all ports with the same name on your net
work. Other variations are also available.

When should you use PPCBrowser, and when should you use IPC
ListPorts? Obviously, if you don't know the name and location of the
port you want talk with, you probably want to call PPCBrowser. If your
application will be communicating with that port regularly-for example,
if it will be using a particular server in future sessions- you could save
the name and location of the port. When the application is started again,
you could use IPCListPorts to check if that port is open. You would also
use IPCListPorts when your software doesn' t have an interface. In this
case, your software will presumably know what port to look for.

Call PPCOpen to open a PPC port. When making this call, you specify
the port's name and location and whether the port should be visible on
the network. PPCOpen will return a port reference number if the call was
successful. You'll need this number to make certain other calls to the PPC
Toolbox.

68 ..,. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

Note..,.

In the current implemen tation of the PPC Toolbox, all sessions happen
in real time, so applications must be running simultaneously in order to
use the PPC Toolbox.

In future versions of the PPC Toolbox, a store-and-forward mode
will also be available. This will allow one application to leave mes
sages for another application that may not be running at the same
time.

To initiate a PPC session with another port, you'll call either PPCStart
or StartSecureSession. In either case, you'll supply the port reference
number of the port you're communicating from, the name and location of
the PPC port you want to hold the session, whether this session is to be
connected in real time, and four bytes of user data. This data is sent to the
other port and is obtained there by a call to PPCinform, which is dis
cussed below. If this call to either PPCStart or StartSecureSession is suc
cessful, you'll get a session reference number that uniquely identi fies this
session. If the attempt to start a session was rejected, you' ll get a reject
code (which is different from the error code returned by this call).

StartSecureSession provides authentication services to verify that the
user has the appropriate privileges on the other end of the session. This
call is equivalent to asking for the user's name and password, and then
calling PPCStart. You can pass the user's name and a prompt for the
standard dialog box requesting the user's name and password. Start
SecureSession encrypts the user name and password and sends them to
the remote machine for authentication . The remote machine, which must
have already called PPCinform, can accept or reject the request. A dialog
box is displayed if the request was rejected.

Call the PPCinform routine if your application can receive session
requests. You should make this call after you've opened a PPC port. You'll
need to supply the port reference number when calling PPClnform. You
can specify whether to automatically accept session requests. Make sure
this call is executed asyn chronously, or your application will be idle until
a session request arrives. You can have more than one open call to
PPClnform.

When a session request arrives, following your call to PPCinform,
you' ll get the user name, the name and location from which the request
came, the user data provided by the requestor, and whether the request
came from the loca l machine or from somewhere else on the network.

When you receive a request for a session, following your ca ll to

.,.. The PPC Toolbox 69

PPClnform, you should ca ll either PPCAccept or PPCReject. Note that a
call to PPCReject is not the same as a rejection where the user couldn't be
authenticated: You might reject a call because you don' t have sufficient
resources at this time or because you're about to shut down and don' t
want any new sessions to begin.

Once a session is initiated, use the PPCRead and PPCWrite calls to
receive and send blocks of data. These calls behave much like file 1/ 0
calls. You need to specify parameters such as a buffer pointer and buffer
length in addition to such PPC-specific parameters as session reference
number. Calls to PPCRead and PPCWrite should usually be executed
asynchronously. Apple recommends that once you've started a session,
you should always have a pending PPCRead to provide quick notification
in case of an error.

A block of data can contain information in any form, since the PPC
Toolbox simply treats it as a string of bytes. Blocks can be as large as 232

bytes. You can specify a creator and type for the first block to be written,
which is helpful if your software will be working with more than one type
of data. The creator and type are passed to the receiver of the message.

To end a PPC session, call PPCEnd whether you used either PPCStart,
StartSecureSession, or PPCAccept to start the session. You must specify
the session reference number of the session you wish to end.

When you're all done with a port, call PPCClose to shut it down. You'll
need to pass the port reference number you got when the port was first
opened.

Two calls are useful for dealing with user authentication. Call Get
DefaultUser to get the user reference number and name of the default
user. Call DeleteUserldentity to remove the name and password for the
specified user reference number .

..,_ An Example of Using the PPC Toolbox

Let's now look at an example of how you might use the PPC Toolbox.
Thjs example is illustrated in Figure 6-1. In this illustration, time flows
down the diagram-that is, a higher call is made before the call(s) below
it on that machine . The remote machine hosts a server that provides a
service that other applications on the network need to use. In this exam
ple, the server maintains a real-time database of stock values. When it
gets a stock name, it returns the la test value for that stock. The user at the
local machine often needs to look up the values of various stocks.

The server software, as part of its initialization process, calls PPCOpen
to open a PPC port, and then PPCinform to let others know that the

70 IJI> Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

PPC Calls made
from Local Machine

PPCOpen

PPCBrowse r

StartSecureSession

PPCWrite

PPCRead

PPCEnd

PPCCiose

· ------- --- ---

PPC Calls made from
Remote Machine

--- ---

PPCOpen

PPCinform

PPCAccept

PPCRead

PPCWrite

PPCEnd

PPCCiose

Figure 6- 1 . Example of using the PPC Toolbox

server is available. At the local machine, the user starts the stock-quote
software and specifies the server through the dialog box displayed by the
call to PPCBrowser. When the user needs a stock quote, he or she logs
onto the server by calling StartSecureSession. The server gets the
request, verifies the user name and password, and then accepts the
request ·with the call to PPCAccept. Next, the server, which is written to
use a particular protocol, issues a call to PPCRead to get a stock name.

The stock-quote software on the local machine then calls PPCWrite to
send the name of the stock and issues a call to PPCRead to get the results
back from the server. Following the completion of the call to PPCRead,
the server software gets the name. Using a call to PPCWrite, the server
looks up the value of the stock and returns the value. The PPCRead call
from the stock-quote software is then completed, and the value is dis-

..,. Using High-Level Events 71

played to the user. You close the session with a call to PPCEnd, and close
the port with a call to PPCClose.

Meanwhile, the server has issued a call to PPCEnd to close this session.
When the server shuts down, it makes a call to PPCClose to close the
PPC port.

In reality, the stock-quote software probably wouldn't close the session
after getting a single quote. It would start a session with the server and
continue the session, with many writes and reads, before closing the
session .

...,. Using High-Level Events

Let's now look at what high-level events are and how to use them. Before
we do that, let's review the role of events in the Macintosh operating
system.

~ Types of Events

Macintosh applications are said to be event-driven because the basic struc
ture of the application is a loop of code that gets an event and then pro
cesses it. System 7 allows three categories of events in the Macintosh
operating system:

• Low-level events
• Operating-system events

• High-level events

~ Low-Level Events

Some low-level events tell the application the following information:

• About actions performed by the user (mouse down, mouse up, key
down, key up, key autorepeat, disk inserted)

• About activity from other sources (device driver)

• A message from the application itself
• That there are no other events to report- that is, the null event

The Operating System Event Manager (separate from the Toolbox Event
Manager) maintains a single queue of these low-level events. These
events are sent to the active application.

72 ..,.. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

Other low-level events report changes in the position of windows. The
activate, deactivate, and update events are generated by the Window
Manager and are sent to the Toolbox Event Manager.

Low-level events (and all other events) are described by an Event
Record, as illustrated in Figure 6-2. The event code, the first field in this
data structure, describes the kind of event.

what (event code)

message

when (clock ticks since startup)

where (mouse location)

modifiers (flags)

Figure 6-2. Structure of an EventRecord

IJIIo Operating-System Events

Operating-system events were introduced with MultiFinder. The operat
ing system sends these events to tell the application about changes in its
status . The kinds of operating-system events are suspend, resume,
mouse-moved, and application-died.

A suspe11d event tells your application that it should prepare to move
from the frontmost position. It should hide floating windows, unhighlight
selections, convert the local scrap to the global scrap, and so on. Your
application is not suspended until it makes another call to WaitNext
Event, GetNextEvent, or EventAvail. Once it is suspended, your appli
cation will no t get any CPU time until it becomes the frontmost
application, unless it can perform some useful activity in the background.

A resume event tells your application to become the frontmost applica
tion. It should restore any highlighting, restore floating windows, convert
the global scrap to the local scrap if needed, and so on. As soon as the
application's state has been restored, it then proceeds with the regular
event loop processing.

Mouse-moved events are sent to applications that have specified a
region in their ca ll to WaitNextEvent. You use this call primarily to adjust
the cursor shape.

Applicatio11-died events were used primarily for debuggers. These
events are now sent as Apple events.

..,.. Using High-Level Events 73

..,. High-Level Events

High-level events are new with System 7 and provide a high-level inter
application communications service. These services are built on top of the
PPC Toolbox. The operating system automatically handles PPC session
management and buffering. High-level events are easier to use than the
PPC Toolbox, but high-level events are primarily intended to a llow a pair
of applications to exchange messages. The facilities of the PPC Toolbox
are more general and more powerful, but require more work. High-level
events can be used easily over a network, just like the PPC Toolbox.

The operating system maintains a separate queue for high-level events
for each application that has described itself as capable of handling them.
The size of these queues is limited by available memory.

For the most part, high -level events are handled as yet ano ther case in
the regular event loop processing. A couple of new calls have been added
to the Event Manager to provide access to the optional data associated
wi th high-level events. These calls are described later in this chapter .

..,. Describing High-Level Events

High-level events are described differently than other types of events,
although you obtain them by using one of the regular three ca lls to the
Event Manager: WaitNextEvent, GetNextEvent, or EventAvail. High
level events are identified by a particular mask set in the event record.

The meaning of some fields in the EventRecord is different for high-level
events. The message field and the where field have different meanings here
than for low-level or operating-system events.

The message field contains the message class, which identifies the mes
sage protocol. To allow applications to communicate, the applications must
be able to understand a common set of messages, known as a protocol. The
Event Manager does not understand protocols, but it provides a way for a
message to be identified as a message from a particular protocol.

Apple events have a message field containing 'aevt' and are the most
important protocol because they standardize a wide range of high-level
even ts for all Macintosh applications. You'll look at Apple events later in
this chapter following the survey of high-level events.

Another protocol is the one used by the Edition Manager (with a mes
sage field of 'sect'). High- level events are sent by applications that publish
a new version of a document and every other time an event happens that
will affect another applica tion using that edition. This protocol can be
treated as a set of high-level events, or it can be more easily handled as
Apple events.

74 ..,.. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

If you have registered your application creator type with the Developer
Technical Support group at Apple, you can use your creator type as the
message class for a private set of high-level events. If you define a private
set of events, only those applications that know about them can use these
events.

The where field contains the message ID. This defines a particular mes
sage in the message class, such as cut or copy in the Apple events class.

The message and where fields provide a complete set of information for
some messages in a message class. At times, this is not enough information;
in these cases, a high-level event may require additional data. Also, it is
often important to know which application sent the event. This additional
information is not contained in the EventRecord. Several new routines in
the Event Manager provide access to this information for applications .

.,... Calling High-Level Event Manager Routines

To get any additional information about a high-level event after calling
WaitNextEvent, GetNextEvent, or EventAvail, call AcceptHighLevel
Event. You need to pass the address of a message buffer and the address
of a TargetiD data structure, which contains the relevant session reference
number and the port name and location of the sender. The AcceptHigh
Level call fills the buffer with as much data as is available (or will fit in the
buffer) and the number of bytes of data in the buffer. If there is more data
than can fit in the buffer, the buffer will contain as much data as will fit
and you'll get a BufferlsSmall error code. In this case, you can call Accept
HighLevelEvent again to get the rest of the data.

If, as part of your protocol, you need to retrieve a specific high-level
event from the high-level event queue, call GetSpecificHighLevelEvent.
You' ll need to pass the address of a filter procedure and a set of search
parameters. The filter function checks each record in the high-level event
queue until either it finds a record that matches your criteria or there are
no more records.

To send a high-level event to another application, call PostHighLevel.
The parameters for this call include an event record, who the message is
going to, the (optional) address to a message buffer, and delivery options.
You can specify where the message is going in several ways. If the mes
sage is being sent to a process on another machine, you can specify the
process by session ID or port name and address. If the receiver is on the
local machine, you can also specify the process by process serial number
or signature.

Delivery options include giving this message priority and requesting a
return receipt. Message priority is simply a flag; the receiving application

~ Using High-Level Events 75

will have to look for a high-level message with this flag set to process
priority messages before nonpriority messages.

Return receipts are posted by the Event Manager on the receiver's
machine, not by the receiver itself. The receipt is simply another high
level message (of class 'jaym' and message ID 'rtrn'). The modifiers field of
the event record tells you whether the message was accepted. A message
can also be partially accep ted-that is, some, but not all, of the data in the
message buffer may have been read by the receiver. If you need to know
who the return receipt is from (because you have more than one message
out at a time), call AcceptHighLevelEvent and look in the sender param
eter. This contains the identity of the application that "sent" the return
receipt.

Two utility routines convert port names to and from process serial num
bers: GetProcessSerialNumberFromPortName and GetPortName
FromProcessSerialNumber. These two routines are useful only for
translating local process serial numbers-they will not return valid
information for remote process serial numbers. For more information on
process serial numbers, refer to Chapter 17 .

..,.. The 'SIZE' Resource

The 'SIZE' resource was introduced with MultiFinder. MultiFinder uses an
application's 'SIZE' resource to determine the size of the memory partition
to allocate for the application, as well as whether the application is
MultiFinder-aware. Under System 7, the 'SIZE' resource has been
extended to describe additional characteristics of the application, such as
whether it can accept local high-level events and remote high-level
events, and whether it can handle stationery documents directly.

System 7 has integrated all the functions of MultiFinder directly into
the operating system. The 'SIZE' resource describes certain capabilities of
the application so that the operating system can provide the optimal level
of services for it. Every application should have a 'SIZE' resource, or else
the system will use a default set of parameters that produce less than
optimum performance.

The 'SIZE' resource contains 16 bits of flags and two 32-bit integers. The
two integers hold the sizes of the minimum and preferred memory parti
tions. The minimum partition size is the smallest memory partition size in
which your application will run. The preferred size is the largest partition
size that your application would like. Your application will be launched if
at least enough memory for the minimum partition is available. The user
will be asked to confirm that he or she wants to start the application if less
memory than the preferred partition size is available.

76 ..,.. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

The flags describe how the operating system should deal with the
application. Some of these flags have been added with System 7. These
flags are described in detail in the Event Manager chapter of Inside Macin
tosh, Volume VI. The following flags are new since System 7:

• isStationeryAware-If set, means that your application recognizes
stationery documents. If this bit is not set, the Finder duplicates
the document and prompts the user for a name.

• RemoteHLEvents-If set, means that your application will be visi
ble to other applications over the network. If this flag is not set,
your application won' t get any high-level events over the network.
This flag does not affect local high-level events.

• isHighLevelEventAware-If set, means that your application can
deal with high-level events. If it is not set, then your application
will not receive any high-level events.

• useTextEditServices-If set, means that your application wants to
use the inline text input services of TextEdit .

..,.. Apple Events
Apple events are a specific high-level event protocol called the Apple
Event Interprocess Messaging Protocol (AEIMP). This protocol is a stan
dard for all applications. Your application should implement all the Apple
events that are applicable to your class of application so as to be as com
patible with as many other applications as possible.

Apple events are divided into several categories. The most important
category is the required Apple events. Any application that claims to sup
port Apple events must support this minimal set. Only four events are in
the set of required Apple events: open applica tion, open documents, print
documents, and quit.

These required Apple events are important because the Finder will
send these Apple events to an Apple event-aware application. The Finder
will use the older mechanism (which requires using the CountAppFiles
and GetAppFiles routines) for applications that cannot handle Apple
events. The Finder can tell that your application is Apple event-aware if
the isHighLeve!EventAware flag is set in the 'SIZE' resource.

Other categories of Apple events are grouped into successively more
specialized categories. Some sets of Apple events are for basic manipula
tion of text and graphics, and other sets are more specialized for various
categories of applications. These sets of Apple events will evolve, with
more events and more categories of Apple events being standardized over
time. By supporting standard sets of Apple events, applications will

..,.. Apple Events 77

become more open. Users will be then able to use their applications in
more flexible and effective ways.

Apple events are handled like high-level events, as previously
described. You need to add the case of high-level events to your event
loop. The Apple event Manager handles much of the work needed to
process Apple events. This means that Apple events are simpler to deal
with than high-level events in general. In tum, high-level events are sim
pler to deal with than the PPC Toolbox, on which Apple events are based.
Apple events can be used easily over a network, just like the PPC Toolbox
and high-level events.

Note .,.. Future versions of Apple events may use some transport mecha
nism other than high-level events. This shouldn't affect any appli
cations that are written to work with Apple events, because the
Apple event Manager presents a very high-level interface to these
functions. Any changes to the Apple event transport mechanism
should be transparent to applications that use the Apple event
Manager.

~ Compatibility and Apple Events

Call Gestalt with a selector of gesta ltAppleEventsAttr to verify that Apple
events are supported on the current machine.

~ Important Data Structures of the Apple Event Manager

First, here is some terminology used to describe Apple events. An Apple
event is sent by a source to a target. A transaction involving a set of Apple
events is started by a client application that uses the services of a server
application. A transaction typically requires more than one Apple event.
Note that the source of an Apple event is always the sender of that event,
which means that for a given event the client application can act as either
the source or the target at a given point in the transaction. Correspond
ingly, the server application will act as the target or the source.

An Apple event consists of a set of Apple event attributes and Apple
event parameters. Every application uses the services of the Apple Event
Manager to create, access, and dispose of these attributes and parameters.
You will never directly access either the attributes or parameters of an
Apple event.

The a ttributes of an Apple event specify the task to be performed using
the data in the parameters. Attributes include the event class, event ID,
and target application.

78 ..,.. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

Apple event parameters can be divided into several categories. Direct
parameters contajn data to be used in perforrrung the task specified by the
attributes of an Apple event. Most direct parameters are required parame
ters, that is, parameters that must be provided as part of the Apple event.
Other parameters may be optional parameters, that is, parameters for
w hich defaults are specified. Last, some parameters may be additional
parameters, that is, parameters that will be used in addHion to the data
specified in the direct parameters.

The fundamental data structure used by the Apple Event Manager is
the AEDesc or descriptor record. A descriptor record consists of a descrip
tor type, a 4-byte code that describes the data type contained in the
descriptor record, and a handle to the data. Table 6-2 lists the various
descriptor types.

Table 6-2. Apple event descriptor types

Catego111 Descrie.tor TtLf!.e Value Data TtLf!.e
Apple event typeAppleEvent 'aevt' Apple event record

typeAEList 'list' List of descriptor records
typeAERecord 'reco' List of keyword-specified descriptor

records
type Type 'type' Four-byte code for event class or event lD
type Keyword 'keyw' Apple event keyword
typeProperty 'prop' Apple event property
typeTargetiD 'targ' Apple event target ID record

Text typeChar 'TEXT' Unterminated string

Number typeS Mint 'shor' 16-bit Integer
type Integer 'long' 32-bit Integer
typeMagnitude 'magn' Unsigned 32-bit integer
typeSMFloat 'sing' SANE single precision number
type Float 'doub' SANE double precision number
type Extended 'exte' SANE extended precision number
typeComp 'comp' SANE comp number
typeEnumera ted 'enum' Enumerated data

Boolean type Boolean 'boo!' Boolean value
type True 'true' TRUE boolean value
typeFalse 'fals' FALSE boolean value

System typeAiias 'a lis' Alias record
type A pplSigna ture 'sign' Application signature
typeAppParameters 'appa' Process Manager launch parameters
typeFSS 'fss ' File system specification (FSSpec) record
typeProcessSerialNumber 'psn' Process serial number
typeSectioni-1 'sect' Section record handle

.,. Apple Events 79

Table 6-2. Apple event descriptor types (continued)

CategonL

Other

Table 6-3.

Categot1f

Descrietor T'LI?.e Value Data Type
typeSessionlD 'ssid' Session ID
typeTemporaryiD 'tid I Temporary ID
typeNull 'null' NU LL or nonexistent data
type Wild Card '****' Matches all types

An address descriptor record (AEAddressDesc) has the same structure as
an AEDesc record . They differ in that an AEAddressDesc contains the
address of the source (sender) or target (receiver) of an Apple event.

An keyword-specified descriptor record (AEKeyDesc) also has the same
structure as an AEDesc record except that an AEKeyDesc contains an
Apple event keyword in place of a descriptor type. Apple event keywords
are listed in Table 6-3. Notice that while descriptor types merely specify the
data type, keywords specify a meaning for the data as well as the data type.

A descriptor list (AEDescList) has the same structure as an AEDesc
record. They differ in that an AEDescList always contains data of type

Apple event keywords

KelLWOrd Value Data Descrietion

Attribute keyword key AddressAttr 'addr' Address of the target application
key EventClassA ttr 'evcl' Event class of the Apple event
keyEventlDAttr 'evid' Event ID of the Apple event
key Even tSourceAttr 'evrc' Source of the Apple event
key InteractLevelAttr 'inte' User interaction level for server

application
keyMissedKeywordA ttr 'miss' Remaining required parameter in

an Apple event
keyOptionalKeywordAttr 'optk' List of optional parameters for an

Apple event
keyReturniDAttr 'rtid' Return ID for any reply Apple

events
keyTimeou tAttr 'timo' Number of clock ticks that the

client process will wait for a reply
from server

keyTransactioniDAttr 'tran' Transaction ID (identifies a set of
associated Apple events)

Parameter keyword keyDirectObject Direct parameter
keyErrorNumber 'errn' Enor number parameter
keyEnorString 'errs' Error string parameter
key ProcessSerialNumber 'psn' Process serial number parameter

80 ..,. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

typeAEList, that is, a list of descriptor records. An AERecord is the same
as an AEDescList, but is used in a different context. An Apple event record
(Apple event) is defined to be an AERecord except that it is always of type
typeAppleEvent. An Apple event record contains a list of attributes and
parameters, whereas an AERecord contains only parameters. You can
optionally pass an Apple event record in place of an AERecord when
using the routines of the Apple Event Manager. Notice that you cannot do
the reverse, that is, you cannot pass an AERecord in place of an Apple
event (Apple event record).

Apple event records, AEDesc, and the other data structures bear a
strong resemblence to LISP data structures. They contain lists, which can
contain other lists, and so on. The names of the some of the Apple event
Manager routines also reflect a LISP-like approach (such as
AEGetNthPtr).

~ Using Apple Event Dispatch Tables

Create an Apple event dispatch table for your application by ca lling
AEinstallEventHandler for each Apple event that your application can
handle. You'll supply parameters including the event class, the event ID
and a pointer to an event handler routine for that type of Apple event.
This dispatch table is used in a similar manner to the trap dispatch table,
which is used to handle Macintosh system ca lls. The Apple event dis
patch table is clearly operating at a more abstract level.

Call AEGetEventHandler to get a pointer to the handler for the speci
fied Apple event belonging to the specified class. Call AERemove
EventHandler to remove an Apple event handler for the specified Apple
event belonging to the specified class.

Call the AEProcessAppleEvent routine, perhaps in your main event
loop, to process the specified Apple event. This system call first looks in
the application's Apple event dispatch table for a handler for this event. If
a handler has been installed there, then control is passed to it. If a suitable
handler does not exist there, then this system call looks in the system
Apple event dispatch table for a handler. If a suitable handler has been
installed there, then control is passed to it. If no handler is found for this
event, then it returns an errAEEventNotHandled to the server application
and, if requested, to the client application.

Rather than passing the current Apple event as a parameter to your
routines, your routines can use the AEGetTheCurrentEvent system call.
This will reduce the number of parameters needed for your routines and
will make an incremental performance improvement in them.

Your application can suspend and resume processing an Apple event

..,. Apple Events 81

by using the AESuspendTheCurrentEvent and AEResumeTheCur
rentEvent system ca lls. The Apple Event Manager does not dispose of
Apple events automatically, so you can suspend and resume the process
ing of an Apple event without having to worry about storing the event.

You can also take advantage of special handler dispatch tables. Han
dlers of this type are called before the Apple event handler dispatches an
Apple event. There is an application Apple event dispatch table for each
application and a system Apple event dispa tch table. If you install a spe
cial handler in the system table, then it will be called for Apple events for
all applications. Under System 7, the only type of special handler which
can be installed is of type keyPreDispatch .

Call AEinstallSpecialHandler to insta ll a handler for the specified
keyword in the specified special handler dispatch table. Call AEGet
SpecialHandler to get a pointer to the handler for the specified keyword
from either the application or system Apple event dispatch table. Call
AERemoveSpecialHandler to remove the handler for the specified key
word from either the application or system Apple event dispatch table.

You can write your own Apple event handlers. Your handler should use
Apple event Manager routines to extract the attributes and parameters
from an Apple event. It should then perform the task specified by the
attributes .

..,. Extracting Data from an Apple Event

The Apple Event Manager provides a full set of routines for extracting the
attributes and parameters from an Apple event. These routines can simi
larly be used to extract data from descriptor records, AERecords, and
other data structures similar in sh·ucture. Apple event Manager routines
that have a suffix of -Ptr extract data from a descriptor record into a buffer
which you specify. Apple event Manager routines which have a suffix of
-Desc extract descriptor records. Table 6-4 lis ts the routines for extracting
data.

The Apple Event Manager allows you to coerce data to other data
types. Call AECoercePtr or AECoerceDesc to coerce data to the specified
type. You can install your own coercion routines in a coercion handler
table. There are three routines for manipulating this table: AEin
stallCoercionHandler, AEGetCoercionHandler, and AERemoveCoer
cionHandler. These routines behave similarly to the corresponding
Apple event handler routines.

A very important routine, used when sending or receiving Apple
events, is AEDisposeDesc. The Apple event Manager does not automati
cally dispose of any descriptor records. That means that arzy time that you

82 ..,. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

Table 6-4. Routines for extracting data from Apple event data structures

Routine Name

AEGetAttributePtr
AEGetAttributeDesc
AEGetParamPtr
AEGetParamDesc

AEGetNthPtr
AEGetNthDesc

AECountltems
AEGetArray

AEGetKeyPtr

AEGetKeyDesc

AESizeOfAttribute

AESizeOfParameter

AESizeOfNthltem

AESizeOfKeyDesc

Fu11ction

Extracts data for the specified attribute
Extracts descriptor record for the specified attribute
Extracts data for the specified parameter
Extracts descriptor record for the specified
parameter
Extracts data for the nth item of a parameter's list
Extracts descriptor record for the nth item of a
parameter's list
Counts the number of items in a descriptor list
Converts an Apple event array into a C or Pascal
array
Extracts data from the specified keyword-specified
descriptor record
Extracts descriptor record from the specified
keyword-specified descriptor record
Returns size and descriptor type of the specified
attribute
Returns size and descriptor type of the specified
parameter
Returns size and descriptor type of the nth
descriptor record in a descriptor list
Returns size and descriptor type of the specified
keyword-specified descriptor record

have created a descriptor record of any kind, you are responsible for dis
posing of it when you are done with it. This one routine disposes of a
descriptor record or any of its derivative types.

~ Sending an Apple Event

The Apple Event Manager provides a full set of routines for creating an
Apple event or other Apple Event Manager da ta structures.

Call AECreateAppleEvent to create an Apple event and AECreate
Desc to create a descriptor record. To duplicate an existing descriptor
record, call AEDuplicateDesc. To create a descriptor list or AERecord,
call AECreateList. Once you have called one of these routines to create a
data structure, use the routines listed in Table 6-5 to add data to them or
delete data from them.

~ Apple Events 83

Table 6-5. Routines for adding and deleting data from Apple
event data structures

Routine Name
AEPutPtr

AEPutDesc
AEPutArray
AEPutKeyPtr

AEPutKeyDesc

A EPutParamPtr

AEPutParamDesc

AEPutAttributePtr

AEPutAttributeDesc

AEDeleteltem
AEDeleteKeyDesc

AEDeleteParam

Function
Converts data from a buffer into a descriptor
record and adds it to a descriptor list
Adds a descriptor record to a descriptor list
Puts an Apple event array into a descriptor list
Puts data into a keyword-specified descriptor
record and adds it to an AERecord
Converts descriptor record into a keyword
specified descriptor record and adds it to an
AERecord
Converts data into a parameter and adds it to an
Apple event
Converts descriptor record into a parameter and
adds it to an Apple event
Converts data into an attribute and adds it to an
Apple event
Converts descriptor record into an attribute and
adds it to an Apple event
Deletes a descriptor record from a descriptor list
Deletes a keyword-specified descriptor record from
an AERecord
Deletes an Apple event parameter

Call AESend to send the specified Apple event. Among the many
parameters for this routine, you specify whether you want a reply Apple
event or not, and whether you are willing to give up control of the proces
sor while waiting for the reply. The latter option is especially useful when
the source and target of the Apple event are on the same machine.
Another parameter to specify is whether the server application should
never, can, or will always interact with the user in response to this Apple
event. You can also specify a timeout interval if you are waiting for a reply
or expecting a return receipt.

Call AESetlnteractionAllowed to control the user interaction prefer
ences when responding to Apple events. There are three choices: Allow
the server application to interact with the user

• only when the client and server application are the same
• only if the client application is on the same machine as the server

application
• anytime

84 .,. Chapter 6 The PPC Toolbox, High-Level Events, and Apple Events

Note,...

Call AEGetlnteractionAllowed to get the current user interaction
preferences. Call AEinteractWithUser before interacting with the user,
such as displaying a dialog box or an alert. Remember that your applica
tion may be in the background at this time.

Call AEResetTimer to reset the timeout value for an Apple event to its
initial value. Do this when you cannot reply before the client's application
will time out.

~ Where Are We Headed?
By using Apple events, high-level events, and the PPC Toolbox, you can
crea te large applica tions that are more robust and more configurable.
Applications will become more robust because a single application will no
longer have to hold all the code. Such applications are hard to develop
witness the long time it has taken to ship some of the more complex word
processing applica tions on the Macintosh . These applications are also dif
ficult to maintain, simply because complex applications have a lot of code.

You can implement specialized features as separate, cooperative appli
ca tions, which can be distributed separately from the primary application.
The main application communicates with these specialized applica tions
using Apple events, high-level events, or the PPC Toolbox. What would
have been a single, complex application can now be separated into a pri
mary and one or more secondary applications, each of which is simpler.
In addition, when you use a well-defined protocol for communicating
between them, the connections between these applications become sim
pler than what would be possible with a single application. The net effect
is to reduce the overall complexity of the code, which decreases the time
needed to design, implement, and test the code.

One architecture that will now be possible with Apple events will be to
separate an application into an engine, which performs some set of func
tions and has little or no user interface, and a front-end, which provides
the user with access to the functions of the engine. Applications will
become more configurable because Apple events provides a simple
method of communicating with applications.

Using AppleScript, a future scripting language, users will be able
to configure their applications to better suit their needs.

These new fea tures-Apple events, high -level events, and the PPC
Toolbox-point toward where the Macintosh operating system is evolv
ing. Rather than becoming like a traditional minicomputer operating sys-

..,.. Conclusion 85

tern, such as UNIX or VAX/VMS, the Macintosh operating system is
growing toward a more object-oriented model. In this model, the bound
aries between applications are permeable by messages. Users and other
applications can send messages to an application to perform a task. Users
can use their software by connecting them as components in various
ways. Prior to System 7, applications could not communicate in a stan
dard, high-level manner. Using the new features of System 7, tomorrow's
software will be exciting to develop and to use .

..,.. Conclusion

Get Info ~

In this chapter, you've looked at the PPC Toolbox, which provides a low
level set of services for interapplication communications. High-level
events provide a more abstract set of services, which are easier to use than
the PPC Toolbox. Apple events are a standardized class of high-level
events that will be supported by all applications, just as cut, copy, and
paste are today.

Apple events are the first step in the evolution of applications and the
Macintosh operating system. Rather than providing just low-level lAC
services, Apple has provided a more sophisticated and powerful lAC
mechanism built on top of the low-level services. In the long run, if you
use these services, your applications will become more robust and more
intelligent.

For more information on the PPC Toolbox, refer to the PPC Tool
box chapter of Inside Macintosh, Volume VI. For more information
on the Name Binding Protocol, refer to Chapter 14 of this book,
the AppleTalk chapter of Inside Macintosh, Volume Vt and Inside
AppleTalk.

For more information on the high-level events, refer to the
Event Manager chapter of Inside Macintosh, Volume VI. You may
also want to refer to the Event Manager chapters of .Inside Macin
tosh; Volumes I and V.

For more information on Apple events and the Apple Event
Manager, refer to the Apple Event Manager chapter of Inside Mac
intosh, Volume VI, and to the APDA document, The Developer's
Guide to Apple Events. For information on specific Apple event pro
tocols, refer to the Technical Notes, which are widely available
through APDA and on many electronic information systems.

7 The Edition Manager

.,.. Introduction
In this chapter, you'll look at an important new feature of the Macintosh
operating system: the Edition Manager. The Edition Manager provides a
simple way to transfer data from one application to other applications and
to automatically keep the data updated.

This new feature of the operating system provides an important and
powerful set of features that are strongly analogous to the Clipboard. In
fact, for the user, the Edition Manager will be like using copy and paste,
except for three new commands named "Create Publisher ... ," "Subscribe
to ... ," and "Publisher/Subscriber Options ... ".

To see how useful the services of the Edition Manager are, consider the
following example. Suppose a work group is creating a proposal that con
tains, in addition to the text, numerous diagrams and pictures. The pro
posal is being written using a word processor, the diagrams are being
created with a drawing program, and the pictures are being scanned. Natu
rally, various people are reviewing the proposal, and it must be updated
until everyone is satisfied. The document could be created using cut, copy,
and paste to move the diagrams and pictures. Unfortunately, each time a
diagram or picture is changed, someone must go through the following
steps:

1. Open the document containing the revised diagram
2. Select the diagram

3. Copy the diagram to the Clipboard

87

88 .,.. Chapter 7 The Edition Manager

4. Switch to the word processor

5. Open the proposal

6. Find the old diagram

7. Select the old diagram

8. Paste the new diagram from the Clipboard, overwriting the old
diagram

9. Save the document

This is an easy process to go through once, but if the proposal contains
dozens or hundreds of illustrations, thls becomes quite tedious.

Contrast that process with what you can do using the services of the
Edition Manager:

1. Create the diagram in the drawing program

2. Select the diagram

3. Choose the "Create PubHsher ... " command

4. Switch to the word processor

5 . Open the proposal
6. Place the cursor where the illustration should go

7. Choose the "Subscribe to ... " command

8. Save the document

Thereafter, each time the illustrator changes the diagram, the word proc
essor is notified of that change. It reads in the revised diagram and
replaces the older version with the latest. Clearly, this will reduce much
of the tedium involved in maintaining large or complex documents.

In this chapter, you' ll first look a t the user's view of pubHshlng and
subscribing, including the recommendations of Apple's Human Interface
Group . Then you'll look at the new system calls you'll be using to imple
ment these services. Last, you' ll look at how to use these new calls.

~ The User's View of Publishing and Subscribing
Inside Macintosh defines a publisher as "a section within a document that
makes its da ta available to other documents or applications." It also
defines a subscriber as "a section within a document that obtains its data
from other documents or applications."

Le t's look at the Clipboard before going through the features of the
Edition Manager, because pubHshing and subscribing editions is similar

..,.. The User's View of Publishing and Subscribing 89

to using the Clipboard with copy and paste. The user selects some data
and then chooses "Copy" from the Edit menu. After switching to another
application, the user then chooses the "Paste" command from the Edit
menu. By using this sequence of actions, the user has moved data from
one application to another. The Clipboard and the commands in the Edit
menu have always been part of the Macintosh operating system.

The basic difference between the Clipboard and the Edition Manager is
that the Edition Manager can notify the subscribers of the edition when
ever the publisher updates the edition. The Clipboard, on the other hand,
must be reused each time to accomplish this task. This means that users
can now be spared much of the drudgery of maintaining complex docu
ments. Figure 7-1 shows the new standard commands that should be
used in applications supporting the Edition Manager.

Create Publisher. ..
Subscribe to ...
Subscriber options ...
Show Borders

Figure 7-1 . The standard commands for using the Edition Manager

The equivalent of the "Copy" command is "Create Publisher " The user
selects this command after making a selection . Next, a dialog box allows
the user to name the edition file wh ere the selected data will be stored, as
well as the location where the file will be created. This dialog box is
shown in Figure 7-2. Notice the area where the publishing application
can display a small version of the data. This dialog box provides an exam
ple of how you can customize the Standard File Package.

When the same, or another, user wants to use the edition in a document,
the user chooses the "Subscribe to ... " command. This command presents
the user with another dialog box, shown in Figure 7-3, which allows the
user to navigate the fi le system to locate the edition fi le to which he or she
wants to subscribe. Notice the area where the subscribing application can
display a small version of the data . This dialog box provides another exam
ple of how you can customize the Standard File Package.

By default, every time the user saves a document that contains one or
more publishers, the edition file(s) are updated. Also by default, every
time the edition file is updated, the subscribing document is automatically

90 ~ Chapter 7 The Edition Manager

Preuiew

0 Applicotions
0 Click er
0 DAM
C! Ooo1ih~s
0 Edition Monoger
0 Eppc EHerciser

=HD

Desktop

New LJ)

Nome of new edition: (Cancel)

1~.... M....:y:.._d_o_od_le_.:~~----__J' n Publish D

Figure 7-2. The standard dialog box for the "Create Publisher ... "
command

Preuiew

0 Eppc EHerciser
OMPW
0 MPWProjects

0 NetBunny
0 System Folder
0 Task-It
0 temp

mm
i:i:i!

I
0

=HD

Desktop

(Cancel)

K Subscribe ll

Figure 7-3. The standard dialog box for the "Subscribe to ... "
command

updated. The user controls these behaviors through the "Publisher
Options ... " and "Subscriber Options ... " dialogs. These two dialogs are
shown in Figures 7-4 and 7-5 respectively.

Each edition should have only a single publisher, or source of data. You
can modify the content of a publisher. One publisher cannot overlap with
any other publisher. The ectition, or section, should be updated whenever
the user saves the document that contains the publisher. When the section is
updated, the Ectition Manager notifies any subscribers that it has changed.

An edition can have none, one, or more than one subscriber. Subscrib
ers should not be modified, but their presentation can be. This means that
you can allow users to resize or reshape the subscriber, or if the subscriber
is text, to change the style of the entire subscriber to bold. If the user does

..,. The User's View of Publishing and Subscribing 91

Publisher to: I 0 My doodles ...,. I

,--Send Editions: ········

@ On Saue

0 Manually (Send Edition Now J
! Lat~st Edition : Friday , February 22, 199 1 8 :19 :27 PM

:··············· ···:

1@:. -.It!!~ I!J I
l .. ~--~·l·i·~·- · ······ · ·S?.·~-~-~-~---j

Select how publisher decides
what to publish.

Cancel Publisher

[Cancel) n OK D

Figure 7-4. The standard dialog box for the "Publisher Options ... "
command

Subscriber to: I 0 My doodles ...,. I

Get Editions: ,

@ Automatically

0 Manually Get Edition Now

Lat~st Edition : Friday , Febt·uar y 22,199 1 8 :19 :27 PM

Cancel Subscriber J

Open Publisher

(Cancel J n OK »

Figure 7-5. The standard dialog box for the "Subscriber Options ... "
command

make any changes to the subscriber, then when the publisher changes,
your application should either update the subscriber and thww away any
changes the user has made, or update the subscriber and redo all the
changes the user has made. When it makes sense, subscribers should be
searchable. Subscribers can be cut, copied, and pasted.

The Edition Manager tracks the location of the edition file. If the edition
file has been renamed or moved to another location on the same volume,
the Edition Manager will be able to find it. However, editions cannot be

92 .,.. Chapter 7 The Edition Manager

moved from one volume to another. To move an edition to another vol
ume, a user must cancel the original publisher, reselect the section, and
republish the section on the new volume.

Users can also subscribe to a complete file. In this case, there is no
publish er. Your application should check whether the edition file has
changed when the subscribing document is opened. Subscribing to files is
described in detail later in this chapter.

You've just looked at how your application should implement these
new services. Now let's look at some of the details of the recommended
user interface for the Edition Manager, and at other aspects of using the
Edition Manager .

.,. Displaying Publishers and Subscribers

Apple has recommendations for showing the borders of publishers and
subscribers. The technical term for both publishers and subscribers is sec
tion. Do not use the word section in documentation for users; instead use
the word edition.

The interface design was an interesting challenge for Apple, since sec
tions are basically selections in a document. Unlike normal selections,
sections can contain one or more publishers and one or more subscribers.
Applications support only one selection. Another difference is that sec
tions persist, whereas selections may or may not persist, depending on the
application. "Persist" means that after opening a document, creating a
publisher (for example), saving the document, and then reopening the
document, the publisher is still in the document and it has the same con
tents as before.

Publishers and subscribers, when selected, should be highlighted by a
3-pixelline drawn just outside the content of the publisher or subscriber.
For publishers, this line should be drawn with a SO percent gray pattern.
For subscribers, use a 75 percent gray line.

Your applica tion can also support an optional command, "Show /Hide
Borders," which allows users to see the borders of all publishers and sub
scribers in a document, or to hide them all. With the "Hide Borders" com
mand, you should show the border of a section only when tha t publisher
or subscriber is selected .

.,. Changes to the Edit Menu

Three new commands should be added to the Edit menu if your applica
tion supports the Edition Manager (See Figure 7-1): "Create Publisher ... ,"
"Subscribe to ... ," and "Publisher/Subscriber Options .. . ". The name of the

.,.. The User's View of Publishing and Subscribing 93

third command depends on whether a publisher or subscriber is currently
selected; it should be grayed out if no section is selected.

Note that these three commands are below cut, copy, and paste and are
separated from them by a gray Hne. Other commands can follow the Edi
tion Manager commands, and they should also be separated by a gray line.

Two optional commands, if supported, should come just after the "Pub
lisher/Subscriber Options ... " command. First is the "Show /Hide Borders"
command, whose name depends on the current choice of the user. The
default sta te should be "Show Borders"- in other words, section borders
should be hidden unless selected. Second is the "Stop All Editions" com
mand, which temporarily stops all update activities for both publishers
and subscribers. When the user has selected this command, place a check
mark next to it.

If your application will run under both System 6 and System 7, then
your application should disable the Edition Manager commands when
running under System 6. It should also display publishers and subscrib
ers. Last, it should allow users to edit both publishers and subscribers;
otherwise, users will not be able to do anything with them .

.,_ Supporting the Edition Manager from Various
Types of Applications

Apple recommends how the Edition Manager should be used from four
types of applications: word processors, paint programs, drawing pro
grams, and spreadsheets. If your application isn ' t in one of these catego
ries, use these recommendations as examples of what to do.

Word processors will primarily be subscribers. When publishing from a
word processor, the borders around a publisher should move with the
text. If the user types into the publisher, then the user will expect to see
the borders grow. If the user deletes some text, the borders should shrink.

Paint programs will primarily be publishers. The borders of a publisher
will be sta tic, and they will change only if the user explicitly moves them.
If your paint program does support subscribers, then it will become more
like a drawing program, since a paint program should not allow users
to change a subscription. Paint programs sh ould also support the
"Show / Hide Borders" command.

Drawing programs will be both publishers and subscribers, and they
should support the "Show /Hide Borders" command.

Spreadsheets will primarily be publishers. Borders of publishers will
grow and shrink as cells are added or removed from the subscriber. Sub
scriptions will be used to import other kinds of data, such as pictures.

94 ..,. Chapter 7 The Edition Manager

.,... The Edition File

The edition file contains the latest version of the data from the publisher.
If this file is located on an AppleShare server (whether using AppleShare
itself or File Sharing), then editions can be used across networks. This
enables work groups to easily share data-an increasingly important use
of networks. Future versions of the Edition Manager may support other
ways of storing editions than just edition files.

An edition file contains data in the same forma ts as the Clipboard:
TEXT and PICT. Every application should be able to subscribe to data in
either TEXT or PICT format. Every application should be able to publish
data in either TEXT or PICT format. You can support private formats in
addition to these two standard formats.

Three data sets are stored in an edition file, identified by the following
types: 'alis', 'prvw', and 'fmts'. The data stored as type 'alis' is written by the
Edition Manager, contains an alias record for the publishing document,
and contains the identity of the section in the document. Since a docu
ment can have more than one publisher, the section identity is necessary.

The data stored as type 'prvw' is an optional PICT file that, if present, is
displayed in the preview area of the standard publish and subscribe dia
logs. Apple recommends that the publishing application create this PICT
if the data takes awhile to display.

The data stored as type 'fmts' is a list of the data formats available in
this edition file. It also contains the length of the data for each format.
This information is maintained by the Edition Manager .

.,... Saving Documents That Contain Sections

When your application saves a document that contains one or more sec
tions, you have a little more work to do. Save each section record as a 'sect'
resource in the document's resource fork. Also, save each corresponding
alias record as an 'alis' record with the same resource ID .

.,... Using the Edition Manager
In this section, you will look at the calls your application should make to
use the Edition Manager. You'll first see how to verify that the Edition
Manager is present, and then how to initialize it. Next, you'll look at the
most important data structure associated with the Edition Manager and
the section record, and at the routines used when working with them.
You'll go through the routines to use when working first with publishers
and then with subscribers, and look at the routines for subscribing to files.

.,. Using the Edition Manager 95

Last, you' ll look at the high-level events your application must support to
work with the Edition Manager .

..,._ Compatibility and the Edition Manager

Call Gestalt with a selector of gestaltEditionMgrAttr to inquire about the
Edition Manager. The only a ttribute that can be returned from this call
under System 7 tells you whether the Edition Manager is present. Don' t
use any of the Edition Manager routines unless you've first verified that it
is present.

..,._ Starting the Edition Manager

Call InitEditionPack to install the Edition Manager in memory and ini
tialize it. This call will fail if there isn ' t enough memory to load the pack
age. If you cannot install the Edition Manager, then your application
should either quit or disable the commands associated with the Event
Manager.

.,... The Section Record

Each publisher or subscriber in a document in an open document must be
described by a section record. The section record contains such informa
tion as whether the section is a publisher or subscriber, whether it is to be
updated automatically or manually, the time and date it was last changed,
a handle to the alias record that points to the publishing document, and a
section ID that uniquely identifies this section within this document. It
also contains some data that is private to the Edition Manager. For more
information on alias records, refer to Chapter 18 .

.,... Working with Section Records

As mentioned above, your application must have a section record for each
publisher or subscriber in an open document. You can use five routines
for working with section records. Use these routines when working with
either publishers or subscribers.

Call NewSection to create a new section. You must pass the identity of
the edition to publish or subscribe to, the location of the document con
taining the section, the section ID, the update mode (automatic or man
ual), and whether this section will be a publisher or subscriber. If this call
succeeds, it returns the handle to a section record (which contains a

96 ..,. Chapter 7 The Edition Manager

handle to the required alias record). If successful, this routine also calls
RegisterSection.

Call RegisterSection to tell the Edition Manager to keep track of a sec
tion. You'll pass the location of the document containing the section and a
handle to the section record. This call returns a Boolean telling your appli
cation if the edition file was either renamed or moved.

Call UnRegisterSection to tell the Edition Manager to dispose of a sec
tion. This happens when closing the document containing the section or
when the user has canceled the section. The only parameter is the handle
to the section record. If this call is successful, you can then dispose of the
section record and its alias record. Once a section has been unregistered,
you will no longer be notified if it was changed, nor can you read data
from it or write data to it.

Call IsRegisteredSection when your application is notified that a sec
tion has changed. This call verifies that the notification is for a registered
section. This is important because your application may have just unreg
istered a section and received notification that it has changed.

Call AssociateSection to ask the Edition Manager to update the alias
record of a section when a section record has either been pasted into a
new document or been saved as a new document. This call ensures that
the alias record will point to the new file.

System 7 has two routines for reading and \.vriting edition data. The
data in an edition can be provided in several different formats, and each
type of data can be read or written separately. The Edition Manager pro
vides an I/0 mark for each type of data. Call SetEditionFormatMark to
set the mark to an offset into the edition for the specified type of data. Call
GetEditionFormatMark to find out the value of the mark for the speci
fied type of data.

~ Creating a Publisher

Call CreateEditionContainerFile to create a new (empty) edition file.
You'll pass the file specifications for the new file and its creator type. This
call doesn't crea te any data in any format in this new file. The four file
types for edition files are 'edtu' for files with no data (as is the case here),
'edtP' for editions with PICT data as their primary data format, 'edtT'
for editions with text data as their primary data format, and 'edts' for
an edition with any other type of data as their primary data format.
You therefore need to provide as many as four different icons for edition
files.

Call DeleteEditionContainerFile to delete an edition file after the user
has canceled a publisher. To provide an undo capability, make this call

~ Using the Edition Manager 97

after the user has saved the document. If there were any subscribers to
this edition, they will receive an error when trying to read data from it.

To get the last edition for which a section was created, call Getlast
EditionContainerUsed before creating a new publisher. This routine
makes it easy for the user to publish an edition and then subscribe to it.
Pass the data returned by this routine to NewPublisherDialog, which
scrolls the file list to the file described by that data.

Call NewPublisherDialog to present the standard new publisher dia
log to the user. You'll pass a handle to the "preview" data (if any) and its
type. This routine returns a file specification for the new edition file.
If your application needs a customized version of this dialog, call New
PublisherExpDialog. You must specify five additional parameters to add
other items to the dialog.

Call OpenNewEdition to prepare to write data to an edition. You need
to pass a handle to the publisher's section record, the creator type for the
file, and a file specification for the edition file. You' ll be returned a refNum
if the call is successful.

To write data to an edition, call WriteEdition providing a refNum, the
data format, a pointer to the data, and the length of the data.

When you are finished writing data to a publisher, call CloseEdition.
The Edition Manager sets the file type to correspond to the first type of
data written to the file. It also sets the modifica tion date field of the sec
tion record. Last, it notifies any current subscribers that the edition has
been updated.

Call SectionOptionsDialog to display the standard Publisher Options
dialog box. You'll get an action code back from this dialog indicating the
user's choice. An action code of 'writ' means the user selected Send Edi
tion Now; an action code of 'end' means the user selected Cancel Pub
lisher; and an action code of ' ' (four space characters) means the user
pressed the OK button. This routine also returns a Boolean indicating
whether the user has changed the section record, for example, by chang
ing the update mode. To provide a customized version of this dialog, call
SectionOptionsExpDialog. You can specify five additional parameters to
add other items to this dialog .

..,.. Creating a Subscriber

To get the last edition for which a section was created, call Getlast
EditionContainerUsed before creating a new subscriber. This routine
makes it easy for the user to publish an edition and then subscribe to it.
Pass the data returned by this routine to NewSubscriberDialog, w hich
scrolls the file list to the file described by that data.

98 ..,. Chapter 7 The Edition Manager

Call NewSubscriberDialog to present the standard new subscriber
dialog to the user. This routine returns a file specification for the selected
edition file. If your application needs a customized version of this dialog,
call NewSubscriberExpDialog. You must specify five additional parame
ters to add other items to the dialog.

Call OpenEdition to prepare to read data from an edition. You'll spec
ify a handle to the subscriber's section record and receive, if successful, a
refNum to be used with other calls.

Call EditionHasFormat to find out whether the specified edition con
tains data in the requested format. If the data is in that format, you'll also
get the length of that data. To get a complete list of all the data formats
available, you can read in the data of type 'fmts'. Remember that this data
is simply a list of all the data formats in that edition and their lengths.

To read in data from the edition in a specific format, call ReadEdition.
In addition to specifying the refNum of the edition and the data format,
you also need to provide a pointer to a buffer. The Edition Manager will
read in as much data as possible and return a byte count.

When you are finished reading data from a publisher, call Close
Edition. The Edition Manager updates the modification date field of the
section record.

Call GetEditionlnfo to get various information about a section's edi
tion file. You'll get the edition's creation date, date of last modification,
creator type, file type, and location.

Call GotoPublisherSection to open the document containing the pub
lisher of the specified edition. This call sends the Finder one Apple event
to open the edition and another Apple event to scroll to the location of the
publisher in that document.

Call SectionOptionsDialog to display the standard Subscriber Options
dialog box. You' ll get an action code back from this dialog indicating the
user's choice. An action code of 'read' means the user selected Get Edition
Now; an action code of 'cncl' means the user selected Cancel Subscriber;
and an action code of ' ' means the user pressed the OK button. This
routine also returns a Boolean indicating whether the user has changed
the section record, for example, by changing the update mode. To provide
a customized version of this dialog, call SectionOptionsExpDialog. You
can specify five additional parameters to add other items to this dialog .

.,... Format Marks

The Edition Manager brings the concept of format marks. A format mark
is similar to the current file position maintained by the File Manager,
except that there is a format mark for each data format in an edition file.

..,.. Using the Edition Manager 99

The format mark indicates where the next 1/ 0 operation should resume.
Format marks are initially 0, but are set to the next byte following an 1/ 0
operation. This allows for reading and writing edition data in chunks,
rather than requiring that all the data be handled at one time.

Set the format mark by calling SetEditionFormatMark, specifying
which Edition file, the data format, and offset. Get the format mark for a
particular format by calling GetEditionFormatMark, similarly specifying
the Edition file and the data format.

..,. Subscribing to Files Rather Than Editions

The Edition Manager also enables users to subscribe to a file. The Edition
Manager never does file 1/ 0 directly; it does I/ 0 through an edition
opener procedure. It uses a standard opener procedure for edition files.
These opener procedures enable the Edition Manager to track changes in
edition files.

You can write custom opener procs to allow your application to sub
scribe to entire files. The details for writing an opener proc are spelled out
in detail in the Edition Manager chapter of Inside Macintosh, Volume VI.
Your application must also call several procedures to use an opener proc.

Call SetEditionOpenerProc to set the current edition opener proc.
You'll pass the address of a opener proc. Call GetEditionOpenerProc to
get the address of the current edition opener proc.

Call CallEditionOpenerProc to call the current edition opener proc,
passing a file specification to the file, a section record, and other parame
ters. You'll also pass an edition opener verb: eoOpen, eoClose, eoOpen
New, eoCloseNew, or eoCanSubscribe. The Edition Manager uses these
verbs to describe what actions to take with the file.

Tell the Edition Manager which format I/0 procedure to use by calling
CallFormatiOProc. Specify whether you want to read, write, create, or
verify the existence of data in the specified format. Use this call when
either subscribing to files or if you need to override the default Edition
Manager I jO procedures. You can also create your own I/0 procedures
for use by the Edition Manager .

..,. Apple Events and the Edition Manager

Your application must be Apple event-aware to use the services of the
Edition Manager. In particular, your application must support the 'open'
Apple event. This message is sent to publishers when the user requests to
go to the publisher of an edition. Actually, the subscribing application
sends the message by calling GotoPublisherSection.

100 ~ Chapter 7 The Edition Manager

In addition to supporting Apple events, your application must also deal
with the class of high-level events defin ed for the Event Manager. This
class is known as type 'sect'. Only four events are in this class: 'read', 'writ',
'end', and 'scrl'.

Your application will receive a 'read' event when a publish er has
recently updated an edition that an open document has registered with
the Edition Manager. When you get a 'read' event, your application
should read the section in again and update the document.

Your application will receive a 'writ' event when it tries to register a
section, but the corresponding edition fi le is missing.

Your application will receive a 'end' event when a publisher has can
celed an edition. Your appl ication should also cancel the corresponding
section in the open document.

Your application will receive a 'scrl' event when the user has selected
Open Publisher from the Subscriber Options dialog. Your application will
be launched if it isn' t open . The 'scrl ' event will then be sent to ask your
application to scroll to. display the publisher.

When it receives any of these four 'sect' events, your application must
call IsRegisteredSection. This call will check that the section specified in
the event record is registered with the Edition Manager. It is possible, as
mentioned previously, that the section may have just been unregistered.
If the event is for an unregistered section, then your application should
ignore it.

...,. Implementing Edit ion Manager Support

When you are implementing support for the Edition Manager in your
applications, follow the human interface guidelines for it carefull y. Apple
has devoted a significant amount of resources to design and test the inter
face for the Edition Manager.

Don't use the Edition Manager for purposes for which it isn 't suited. For
example, the Edition Manager is not well-suited for real-time transfer of
data. Use Apple events, high-level events, or the PPC Toolbox to accom
plish this instead.

~ Conclusion
In this chapter, you've looked at the Edition Manager, which provides
high-level services for transferring data from one application to others
and automatically keeping this data up to date. The Edition Manager can
markedly reduce the drudgery of maintaining data in complex docu-

Gel Info..,.

..,.. Conclusion 101

ments. Apple is strongly encouraging all developers to support this new
operating-system feature, so you can expect pressure from users for this
as well.

For more information on the Edition Manager, refer to the Edition
Manager chapter of Inside Macintosh, Volume VI. You should also
refer to the Event Manager and AppleEvent Manager chapters of
Inside Macintosh, Volume VI for information on high-level events
and AppleEvents.

8 Fonts and TrueType

~ Introduction
Apple announced a new font technology at the 1989 Worldwide Devel
oper's Conference. This technology had a code name of Royal and has
since been renamed TrueType. Quite a controversy arose, since PostScript
fonts had been the primary high-quality fonts available on the Macintosh.

In this chapter, you' ll look at how fonts have evolved on the Macin
tosh. To understand TrueType-Apple's new font technology-and its
significance, you must first understand the context in which fonts are
used . To do this, you'll first look at bitmap fonts and then at PostScript
and PostScript fonts. Then you' ll look at why Apple invented TrueType.

After all that history, you' ll look at what TrueType fonts are and how
they differ from PostScript fonts. Last, you'lllook at some new routines in
the Font Manager that are useful in working with fonts- TrueType or not.

~ Macintosh Fonts: Then and Now
To understand the significance of True Type, you'll need to understand the
history of Macintosh fonts. As you' ll see, both the definition and function
of fonts in the Macintosh operating system have evolved from the early
days of the Macintosh .

103

104 ..,. Chapter 8 Fonts and True Type

Important .,. The word fo nt changes meaning from section to section. For exam
ple, in the next section, it means a 'FONT' resource. Rather than
saying a 'FONT' font, I've used the word font. Only when the
meaning is not clear have I used the more complete description .

...,. The First Font s: 'FONT' Resources

The first Macintosh, introduced in 1984, defines a font as a complete set
of characters of one typeface, with no stylistic variations (bold, italic, and
so on). A font can have a maximum of 255 characters; each font must
have a "missing" character rusplayed for any character not available in
that font. Each size of a font is stored as a 'FONT' resource, where font size
is measured in points. In this version, most of the common Macintosh
fonts are supplied in the point sizes 9, 10, 12, 14, 18, 20, and 24. This uses
a lot of rusk space, since each character in a font is a bitmap.

The size of a 'FONT' font has to be in the range of 1 to 127 points. On
the Macintosh, a point is 1/72 of an inch; in typography, a point is
1/72.27 of an inch- not much of a rufference, but in high-quality typog
raphy it does make a difference. The nominal resolution of most Macin
tosh screens is 72 dots per inch (both horizontally and vertically), so
measuring fonts using the former units is convenient for everyone (except
typographers).

'FONT' resources contain several sets of data. First, each font has a
selies of flags and global parameters. The flags tell whether the font is
proportional or fixed width, black or color, and so on. The globals specify
ascent, descent, and leading for the font, the maximum kerning, and
many other parameters. Following this are three tables: a table of the
bitmaps for the characters, a table of offsets into the bitmap table for
quk kly indexing into the bitmap table, and an (optional) character offset
and width table.

'FONT' resources are identified primarily by font number, although almost
all fonts also have a name for the convenience of users. Under Apple's plan
for font numbers, 0 through 127 are reserved for use by Apple; 128 through
383 are reserved for font vendors to be assigned by Apple; and 384 through
511 are available for use by anyone. There aren' t 32,768 font numbers
because the 'FONT' resolll'ce IDs have composed 9 bits for the font number
and 7 bits for the font size.

Unfortunately, this scheme has never worked because it assumes only a
small number of fonts on the Macintosh. As it's turned out, many people
have tried their hand at creating fonts (perhaps partially because writing

IJi. Macintosh Fonts: Then and Now 105

Macintosh applications is a lot harder than writing MS-DOS or CP jM
applications). Soon, hundreds of fonts had become available for the Mac
intosh, some created by professional type designers, most created by oth
ers. Few designers, if any, ever bothered to register their fonts with Apple.

Even if everyone had registered, there still would have been problems.
Fonts could be used only after the user installed them into his or her
System file. A difficult-to-use utility, known as the Fontj DA Mover, was
used for this purpose. When it installed a font into the System file, it
would renumber the font's resource ID if another font in the System
already had that 10. As a result, users rarely had the same resource ID for
the same fonts. This caused tremendous h eadaches for people who
shared documents because the fonts used in creating the document,
which had certain IDs, usually had cillferent IDs on the other person's
machine.

The primary output device when the Macintosh 128 and 512 were
inh·oduced was the ImageWriter. The Font Manager (through several lay
ers of system software) would send the bitmaps corresponding to the
characters from a font to this dot-matrix printer. If the font was not avail
able in the requested size, the Font Manager would attempt to scale the
font in another size to the requested size. This usually Jed to unattractive
characters, except when the font was available in an integral multiple or
divisor of the requested size.

~ PostScript Arrives

PostScript and PostScript fonts were first usable on the Macintosh when
the LaserWriter was introduced. This 300 dpi laser printer had a Post
Script interpreter built into it. At the time, Apple advertised the Laser
Writer as its most powerfu l computer because the Motorola CPU chip in
the printer used a higher clock speed than did any members of the Macin
tosh family.

PostScript fonts differ significantly from bitmap fonts. PostScript fonts
do not contain bitmaps; rather, they contain mathematical descriptions of
the curves that describe each character in the font. PostScript fon ts have
several advantages over bitmap fonts:

• A PostScrip t font can be used for a wide range of point sizes, and
it looks good a t any size. (Actually, some fonts are designed to
look their best only in certain sizes.)

• A PostScript font requires much less space than the equivalent set
of bitmap fonts.

106 .,.. Chapter 8 Fonts and TrueType

• PostScript fonts are referenced by name only, reducing the poten
tial for conflicts between fonts when documents are shared across
machines. As you will see later, using names does not eliminate
conflicts.

One problem with PostScript fonts is that they cannot be displayed on
the screen by the Macintosh system software, because there is no Post
Script interpreter built into the Macintosh operating system. What is dis
played on the screen is a bitmap font that corresponds to the PostScript
font. This correspondence is maintained through the bitmap font name
and the name for the equivalent PostScript font. Resource IDs or font
numbers are not used for this purpose.

The printer driver (for example, for the LaserWriter) checks whether
the desired PostScript font is in the LaserWriter. If the font is not available
in the printer, then the d.li.ver checks whether the font is available on the
user's machine. If not, then at the user's choice, either another PostScript
font is substituted or the bitmap font is downloaded and printed. If the
bitmap font is printed, the print quality is usually lower, but sometimes
this is still the better choice.

When the printer (such as the Apple LaserWriter) needs to print a char
acter in a PostScript font, it generates a bitmap for that character in the
requested size and style in real time. Higher-quality PostScript fonts are
actually a set of PostScript fonts, one font per style: plain, italic, bold, and
bold italic. The character bitmaps generated in the printer are created for
the resolution of the printer-300 dpi for the Apple LaserWriter, or 1270
dpi or higher for typesetting devices . Ultimately, even PostScript fonts
become bitmaps.

Adobe later released a product called Adobe Type Manager (ATM) that
contains a PostScript interpreter. ATM, released after TrueType was
announced, traps all references to fonts and checks for a corresponding
PostScript font file. If such a file exists, then the interpreter generates
bitmaps at the specified size for the specified font. By using PostScript
fonts directly on the Macintosh, ATM allows PostScript fonts in arbitrary
sizes to be displayed on the screen. An important disadvantage of ATM is
that PostScript font files, although more compact than bitmap fonts, still
take up a lot of room, especially when a dozen or more fonts are kept on
disk.

So what is a PostScript font anyway? A PostScript font contains, for
each character in the font, a set of PostScript commands that describe the
shape of the character.

...,. Macintosh Fonts: Then and Now 107

..,. New Font Resources: 'NFNr Resources

After all the problems with the 'FONT' style of fonts, Apple created a new
type of bitmap font that was kept in 'NFNT' resources. 'NFNT' resources
are identical to 'FONT' resources, except for one difference: 'NFNT' fonts
can be in color or gray-scale. A resource of type 'fctb' specifies a color to be
used with the 'NFNT' resource, and the 'fctb' must have the same resource
ID as the 'NFNT'.

Both old 'FONT' resources and new 'NFNT' resources are organized by
'FOND' resources. A 'FOND' resource manages all the fonts in a single
font family, thus reducing some of the complexity of having numerous
bitmap fonts. A 'FOND' resource contains a list of all the 'NFNT' or 'FONT'
resources in a single font family. A font family is the set of all fonts
('NFNT' or 'FONT') associated with a particular font name, such as Courier
or Chicago. In some cases, some font vendors use one 'FOND' resource for
all the fonts associated with a single font name and a particular style, such
as plain, bold, or ita lic. They do this so that the bitmap fonts can be
matched with their corresponding PostScript fonts. PostScript fonts
almost always include one PostScript font for each important style. For
example, when you buy a PostScript version of the Times Roman font,
you actually get four separate fonts: plain Times Roman, bold Times
Roman, the italic version, and bold italics. You get these four fonts rather
than a single font because the font designers have decided that for the
best-quality output, it is better to design fonts for these styles separately.
For other combinations of styles, the printer uses one of these four styles
as a base and adjusts the fonts algorithmically to produce the desired
style.

'FOND' resources also contain much more information about the font .
Among this data are global values that apply to the entire font family and
optional tables that describe characteristics of each character in each font
in the famil y. Among the global values are flags specifying whether the
font is proportional or fixed in width; the ascent, descent, and leading;
and the maximum width of a character. There are two optional tables,
one containing character widths, the other containing character image
heights. Among the other tables in this resource are a list of all the associ
a ted font resources and kerning data for character pairs. 'FOND' resource
IDs are 16-bit integers, which means that many more fonts can be identi
fied without the resource ID conflicts that occurred with 'FONT' resources.

Technical Note # 191, titled Font Names, recommends that applications
identify the fonts used in documents by name rather than by resource ID
or font number. If the font is part of a font family, then you should save
the font family name ('FOND') rather than the name of the specific bitmap

108 ..,. Chapter 8 Fonts a nd True tYpe

font ('NFNT' or 'FONT'). This solves some of the font identification con
flicts, but alas, it does not solve this problem completely.

Unfortunately, conflicts in font names can occur. This tends to happen
across vendors, since any font vendor will presumably not sell more than
one font with the same name. For the most part, such fonts include a
corresponding PostScript font that is used for printing. For an example of
this name problem, assume two (or more) vendors sell a font named Hel
vetica. If a document is created using one vendor's Helvetica and then
printed on another machine that has another vendor's Helvetica, then the
font widths will probably differ between the two versions of Helvetica.
This may change the locations where lines of text wrap, and it can change
the page boundaries. Clearly, this is a problem for all applications, espe
cially text-intensive applications .

.,... True Type Emerges

Apple's goals in developing TrueType were to move away from bitmap
fonts and their associated problems, but, at the same time, to provide
improvements over the PostScript font technology. Another goal was to
move towards an open, non-proprietary font format. At the time
TrueType was announced, only Adobe and its licensees could create Type
1 PostScript fonts. The TrueType font format is also designed so that
existing fonts in other formats (PostScript and others) can be easily con
verted. Another goal was to gain the cooperation of the type industry.
Apple worked with many leading type vendors to ensure tha t the
TrueType language would provide power and flexibility. Judging from
the vendors who are supporting this new font technology-including
Linotype, Monotype, International Typeface Corporation, Bitstream,
AGFAjCompugraphic, URW, and Kingsley 1 ATF-Apple seems to have
succeeded in doing this.

TrueType technology is used for displaying characters on the screen as
well as for printing, so fonts must be rendered quickly. In fact, one advan
tage of TrueType over PostScript is that fonts are rendered more quickly
using the former. This is important in providing fast response time.
Another advantage of TrueType over ATM and PostScript fonts is that
True Type is built into the operating system. Users do not have to purchase
it, as they do with ATM.

TrueType allows a much closer correspondence between the characters
seen on the screen and on paper. Because the fonts are created from the
same description, text-intensive applications will have an easier time
majntaining the correspondence between screen and paper. In addition,
because this technology is embedded into the system software, this

..,. Macintosh Fonts: Then and Now 109

technology should also be more s table than the PostScript/bitmap font
technology.

TrueType fonts a re s tored as 'sfnt' resources. These resources, simnarly
to 'NFNT' resources, are also managed by 'FOND' resources. Entries for an
'sfnt' in a 'FOND' resource are distinguished by a value of 0 for the size
field; this value will be nonzero for an 'NFNT'.

These new 'sfnt' resources are considerably improved from the earlier
font resources beyond the obvious change from bitmaps to outlines. The
'sfnt' resource has a version number, allowing for future changes in the
structure of the resource. The font data has been separated into tables,
each table named with a tag, or 4-byte code. Thirteen tables are defined in
the first version of the 'sfnt' resource, with provisions for additional tables
in the future. Each table also has a version number, allowing for changes.
There is also a checksum for the entire resource and for each of the tables.
You can use these checksums to detect changes in a font between the time
when a document is changed and saved, and later when it is opened.

Several of the more important tables in the 'sfnt' resource are the 'head'
table, which contains a font header; the 'glyf' table, which contains the
information for generating each character; the 'name' table, which con
tains the font family name, a copyright notice, a fu ll font name, a version
string, and other information, possibly in a variety of languages; and the
'hdmx' table, which contains horizontal metrics for use in laying out text.
The 'sfnt' resource is quite complex.

The checksums and the information in the 'name' table enable the font
identification problem to be comple tely solved, so long as TrueType fonts
are used. By saving the 'sfnt' checksum with the font name in documents,
and by checking this information when the document is opened, your
application can warn the user if the font information is different since the
document was last saved. A font may have changed because additional
kerning values were added, because new ligatures were added, or for
related reasons. If the font has changed, then you can warn the user that
the appearance of the document may change because one or more fonts
ha ve changed .

Sophisticated typographic applications can also take advantage of the
'sfnt' resource to easily locate font metric information. Previously, applica
tions had to directly access font bitmaps and calculate metrics from them.
This is tricky code to write, and you will have to continue using such code
for non-True Type fonts.

TrueType fonts, unlike bitmap fonts ('FONT' and 'NFNT'), are outline
fonts. They can therefore be used in arbitrary point sizes, with no penalty
for using less common sizes. Characters in a TrueType font on the screen
correspond closely to the high-quality printed characters. TrueType fonts

110 ..,.. Chapter 8 Fonts and TrueType

are black; that is, TrueType fonts a t this time cannot specify colors or grays
for individual pixels.

Moreover, unli ke PostScript fonts, TrueType fonts are completely inte
grated into the operating system- they are used by the Macintosh system
software to generate characters for both screen and printer. Fur thermore,
you can use TrueType fonts on any output device, not only on laser print
ers; PostScript fonts are used only for printing on laser printers, unless
you choose to use Adobe's ATM product. Finally, you can use TrueType
fonts in the same document as PostScript fonts.

~ The PostScript Controversy

PostScript fonts come in two formats. The only public font format avail
able when PostScript was released was the Type 3 format, which was
widely supported by many type vendors. Adobe had another format, the
Type 1 format, which produced better-quality output because it provided
for more advanced capabilities, such as providing hints for generating the
bitmaps at a particular size. For the first several years, Adobe kept the
Type 1 format proprietar y. A handful of companies paid a licensing fee to
use the Type 1 format and obtain better-quality fonts than the Type 3
equivalent.

Apple and Microsoft announced an agreement at the 1989 Seybold
Conference, the premier trade show and conference on electronic pub
lishing and digital typography: to have Apple license its new font tech
nology to Microsoft for use in Windows and Presentation Manager. The
market for TrueType fonts is therefore larger than if the technology
existed solely on the Macintosh. This will encourage more font vendors to
offer TrueType fonts. In reaction to this agreement, several months la ter
Adobe announced that it would make the Type 1 format an open for
mat- that is, it would be documented and available for use by anyone
with no licensing fees . ln addition, the documentation on the Type 1 for
mat is available from Adobe for a nominal fee .

..,_ Truelype Font Technology

Each TrueType character is described by one or more outlines. Each out
line is composed of one or more contours. A contour is a second-order
B-spline or a straight line, in the simplest case. The B-splines in TrueType
use two kinds of points to describe a curve: points on the curve and points
off the curve. PostScript uses cubic Bezier equations, which require more
calcula tions than quadratic splines. For some characters, however, more

..,.. TrueType Font Technology 111

splines are required to describe a given outline in TrueType than Bezier
curves in PostScript.

Figure 8-1 shows a letter from a TrueType font. Compare it with Figure
8-3, which shows a letter from a PostScript font. Notice that there are
more points required to specify the TrueType letter than the correspond
ing PostScript letter. Figures 8-2 and 8-4, which show a closeup of a por
tion of the same letters in Figures 8-1 and 8-3 respectively, also show this.

The TrueType instruction set is better suited to create fonts than is Post
Script's, since TrueType was designed solely and specifically for that pur
pose. PostScript fonts are written using PostScript commands, but
PostScript is a general page-description language, not a language specific
to creating fonts.

Th e TrueType language contains about a hundred instructions. The lan
guage itself is stack-based, as is PostScript. The instructions are, to a C or
Pascal programmer, an odd mix of high -level, application-specific
instructions and low-level instructions, some seeming close to assembly
language. The TrueType insh·uctions fall into the following categories:

• Modifying the graphics state settings

Controlling the global graphics state

Controlling the local graphics state

Setting the control points for a contour

Controlling how values should be rounded

• Managing outlines

Interpolating and shifting contour points

Moving contour points

Reading and writing data

Delta exceptions

• General-purpose instructions

Stack manipulation

Relational and logical instructions

Flow-of-control instructions

Arithmetic and mathematical instructions

Creating and calling functions

Debugging

Compensating for engine characteristics

112 llll> Chapter 8 Fonts and TrueType

Figure 8-1. A TrueType lette r

Figure 8-2. Closeup of a TrueType let ter

..,. TrueType Font Technology 113

Figure 8-3. A PostScript letter

Figure 8-4. Closeup of a PostScript letter

114 II> Chapter 8 Fonts and TrueType

Note~

The TrueType language assumes the existence of a stack, a local graphics
state, and a global graphics state. The two graphics states contain con
stants, variables, pointers, and flags. The global graphics state is initialized
with each new font and size used, and the local graphics state is initialized
when a new character is created.

The language is quite interesting because it is an example of a truly
application-specific language. Some fea tures of the language are specific
to the creation of fonts, and therefore only knowledgeable type designers
will understand some aspects of this language. Because the TrueType lan
guage is used solely for fonts, only font-designing applications will use
this language. Even in those applications, font designers will almost cer
tainly never see the TrueType language directly.

TrueType outlines are converted into bitmaps by a three-step process.
These processes are performed, in turn, by the scaler, interpreter, and
scan converter.

First, the scaler takes the outline of a character and scales it to the
requested point size. The output from this process is another outline,
which is measured in units appropriate to the output device.

The original outline is measured in units known as ;FUnits, or Font
Units-an abstract unit of measure that is small compared to the
height or width of a character. An FUnit is typically 1/ 2048 to
1/32768 the width of an em, a standard measure of the width of
the letter M in the font.

Second, the interpreter takes the outline from the scaler and interprets
any TrueType instructions for the character. Outline fonts do not neces
sarily include any instructions. This process is known as grid-fitting
because the interpreter takes the character outline and fits it onto a
device-dependent grid. The output of the interpreter is an outline of a
particular character for use on the current output device. As a result of
this process, this new outline may be changed or distorted with respect to
the original outline, so that the final character will present the best
appearance of the font.

Third, the scan converter takes the modified outline from the interpreter
and generates a bitmap rendition of the particular character for use on the
current output device.

..,. Using the Font Manager 115

..,. Taking Full Advantage of TrueType

If an application knows that it is working with an outline font and not a
bitmap font, it can provide new capabilities for working directly with text.
This is primarily because outline fonts can be used at arbitrary sizes,
unlike bitmap fonts. Applications could allow a user to d irectly manipu
late the size of fonts instead of requiring a menu command to accomplish
the same function. Similarly, users could specify horizontal and vertical
letter spacing.

Users could also select some text and directly specify constraints instead
of, for example, using trial and error to fit a title so that it exactly fills the
width of a column. Using TrueType, you could allow the user to select a
line of text and then specify the desired constraints interactively, that is,
that the text should be scaled so that it was exactly as wide as the column.

System 7 ships with four TrueType font families: Times, Helvetica,
Courier, and Symbol. Apple has licensed these fonts from Linotype and
the International Typeface Corporation; Adobe previously licensed these
fonts to create the PostScript versions of them. Thus, the TrueType fonts
will match the metrics of the PostScript fonts in the Apple LaserWriter
family .

.,... Using the Font Manager
You will now see how the Font Manager chooses a font, how to check that
outline fonts are available, and the new Font Manager routines .

..,. How the Font Manager Chooses a Font

The default behavior of the System 7 version of the Font Manager is as
follows when your application requests a specific font and size. The Font
Manager first looks for a bitmap font that meets the request. The Font
Manager prefers bitmap fonts to outline fonts for reasons of compatibity.
Your application can tell the Font Manager that it would prefer outline
fonts by using the new SetOutlinePreferred system call described below.

If the Font Manager cannot find a bitmap font that matches your
request, it looks for an 'sfnt' resource that will match the request. If it can
find an 'sfnt' , it will use that for the font. If it cannot find ap 'sfnt', the Font
Manager will use the algorithm described in the Font Manager chapter
of Inside Macintosh, Volume I to scale another bitmap font to fulfill the
request.

116 .,.. Chapter 8 Fonts and TrueType

.,... Compatibility and the Font Manager

Call Gestalt with a selector of gestaltFontMgrAttr to inquire about the
Font Manager. The only attribute this call can return under System 7 tells
you whether outline fonts are available .

.,... Using the New Font Manager Calls

The Font Manager in System 7 contains several new routines for working
with outline (TrueType) fonts. These calls are not available under older
versions of the system. Most applications will not need these calls, but
text-intensive applications, especially high-end applications, will use
these calls to provide the highest-quality output. Note, however, that
even with TrueType, the Font Manager does not provide any support for
rotating text, skewing text, or kerning. If you require any of these capabil
ities, you'll have to write the code yourself.

Call SetOutlinePreferred to tell the Font Manager that your applica
tion would prefer an outline font to a bitmap font if both are available.
The two fonts must be identical in name, style, and point size. This call
affects all open grafPorts of the calling application. By default, this global
value (OutlinePreferred) is FALSE for compatibility with older applica
tions. Call GetOutlinePreferred to find out the current state of Out
linePreferred.

To find out whether the current font in the current grafPort is an outline
font or a bitmap font, call IsOutline. You must specify the point size
you're interested in when making this call.

Call FlushFonts to flush the Font Manager's caches, to get the Font Man
ager and its caches into a known state. The Font Manager saves the most
recently used bitmaps of characters and other font data so that it can provide
good performance. By flushing these caches, subsequent references to out
line fonts will require regenerating the character bitmaps. Font-editing pro
grams are about the only applications that would use this call.

To get accurate measurements on a string of characters, Call Out
lineMetrics. You pass a string of text and the point size that you are
interested in. The call returns such information as the following:

IJi> Using the Font Manager 117

• Height of the tallest character in the string.

• Height of the lowest descender of characters in the string.

• An array of advance-width measurements, one per character in the
string. The advance-width measurement of a character is the width
of the character plus the \"lidth of the white space on both sides of
the character.

• An array of left-side bearing measurements, one per character in
the string. The left-side bearing measurement of a character is the
width of the white space to the left of the character.

• An array of bounding boxes, one per character in the string. Each
box is the smallest box that will fit around the nonwhite pixels of
that character.

OutlineMetrics provides a standard routine for getting font measure
ments without having to manipulate the bitmaps of characters, which
was the only way to accomplish this task previously. Unfortunately, this
routine works only with TrueType fonts.

By making a call to OutlineMetrics before calling DrawText (the usual
routine to draw a string of text), you can tell whether any character in the
string will exceed the line spacing.

If a character will exceed the line spacing, then that character may
overlap a character on another line. You have a choice: You can adjust the
line spacing so that that character will not overlap characters on other
lines, adjust the line spacing for the paragraph, allow the characters to
overlap, and so on. Calling SetPreserveGlyph with a value of TRUE
forces the Font Manager to draw the character exactly as described by the
font, but not to scale the font to fit the line. Otherwise, the Font Manager
will scale the character so that it will not overlap characters on other lines.
By default, the state of this global value (PreserveGlyph) is FALSE for
compatibility. PreserveGlyph affects all grafPorts in the current applica
tion. Call GetPreserveGlyph to retrieve the current value.

{.,ast, by calling the existing routine, RealFont, with a specified font and
size, you can find out whether an outline font can be used at that size.
Size is a characteristic of the font and is therefore decided by the font
designer. Some fonts may not be usable at very small or large sizes by the
designer's decision.

118 ..,.. Chapter 8 Fonts and Truetype

..,. Conclusion
In this chapter, you've looked at the history of fonts in the Macintosh
operating system. Fonts started as bitmaps, then higher-quality PostScript
fonts were supported by the Print Manager. With System 7, Apple has
introduced the latest font technology: TrueType. This technology uses one
description for the font as outlines for both screen and output devices.
Apple has not made any of the older font technologies obsolete. 'FONT',
'NFNT', and PostScript fonts will all continue to work under System 7, so
any existing investment in fonts can continue to be used.

For the most part, applications are not affected by these changes in font
technology. Nonetheless, users will see significant improvements on the
screen because arbitrary font sizes are now available, and because the
same fonts will be used on the screen and on output devices. Several new
calls to the Font Manager are of interest primarily to text-intensive Macin
tosh applications.

Get Info IJl>

.,.. Conclusion 119

For more information on the Font Manager and the new calls dis
cussed in this chapter, refer to the Font Manager chapter of Inside
Macintosh, Volume VI. For more information on the TrueType
instruction set and the format of the 'sfnt' resource, refer to The
TrueType Font Format Specification, available from APDA. For a
comparison between PostScript and TrueType fonts, read the arti
cle entitled "Font Wars" by L. Brett Glass in the August 1990 issue
of Byte.

Several books can provide you with more information on Post
Script fonts. First, three PostScript reference books deal with vari
ous aspects of fonts. The PostScript Language Reference Manual,
Second Edition (Addison-Wesley, 1990) and the PostScript Lan
guage Tutorial and Cookbook (Addison-Wesley, 1985) do not deal
exclusively with fonts, but nonetheless do have important infor
mation about them. The PostScript Language Reference Manual
describes the Type 3 font format. The Adobe Type 1 Font Format
(Addison-Wesley, 1990) describes the Type 1 font format in great
detail.

Two other useful books on PostScript programming provide
examples and more information about PostScript fonts. These are
Understanding PostScript Programming, by David Holzgang (Sybex,
1987) and Real World PostScript, edited by Stephen Roth (Addison
Wesley, 1988).

9 TextEdit and
International Services

..,. Introduction

In this chapter, you'll look at improvements to TextEdit, the operating
system component that provides fundamental text-editing services. As
you will see, most of these changes prepare TextEdit for working with the
Script Manager.

After this, you will look at improvements to the Script Manager itself.
This manager provides a sophisticated set of routines that can make any
application work with most of the writing systems of the world. You'll then
look at the international resources and services that enable your application
to be easily translated for use in the other languages of the world.

Last, you'll look at how to design international support into your appli
cation. By designing it into the first version, you can save yourself a lot of
work in the future.

Before looking at TextEdit, the Script Manager, and the International
Utilities Package, however, let's discuss why Apple is providing these
services .

..,. Why the Script Manager?
Apple is devoting a lot of resources to ensure that the Macintosh system
software can be used in many of the world's languages using the appropriate
writing system. Why is Apple spending so much time, money, and effort to
do this when most other manufacturers don't seem to be interested?

The answer comes when you look at Apple's revenues: It makes good
business sense. More than 40 percent of its revenues now come from sales

121

122 ..,. Chapter 9 TextEdit and International Services

outside the U.S. This is happening for several reasons. The computer mar
ket in the U.S. isn' t saturated yet, but this country has more computers
per person than any other country in the world. The markets in Europe,
Asia, and Australia are growing at a faster rate than in North America.
The computer markets in Latin America and Africa are starting to grow
more quick! y as well.

Most other operating systems provide little, if any, support for other
languages. MS-DOS and most of the operating systems running on mini
computers and mainframes fall into this category. The UNIX operating
system is in the process of being internationalized, but it is still a long way
from providing the kind of support that the Macintosh operating system
does. Many versions of UNIX sold today still support only 7-bit character
codes, which gives you some idea of how far they have to go. Basically,
most operating systems work best with English (or another European lan
guage) because most American engineers have little knowledge of or
exposure to other languages or writing systems. Support for other lan
guages adds little additional cost or development time if it is supported in
the initial design. Retrofitting it into existing products is considerably
more difficult. Undoubtedly other operating systems will someday be
enhanced to support other languages, but the Macintosh operating sys
tem is far ahead of them.

The Macintosh system software uses the Script Manager and the Inter
national Utilities Package to support the language of each country, and
also supports the appropriate currency symbols, calendars, and key
boards. Apple is thereby ensuring that no technical barriers will hinder its
participation in the rapid growth of the computer markets in other coun
tries. Apple Japan is gearing up to do more than a billion dollars' worth of
business in the next several years.

If your application uses the Script Manager and the International Utili
ties Package, then your application can also participate in these rapidly
growing markets. Once again, if you add these features to your initial
design, it will add little to the development time or costs. Retrofitting an
existing product can take much more time and money. Text-intensive
applications are affected more than other kinds of applications .

..,_ Improvements in TextEdit

TextEdit provides the basic text-editing services for the Macintosh operat
ing system. TextEdit is used throughout the operating system as well as by
all applications. Before looking at the improvements to TextEdit in System
7, let's review what TextEdit should and shouldn't be used for.

~ Improvements in TextEdit 123

TextEdit is not a word processor- it can handle no more than 32K char
acters, and its performance declines well before tha t limit is reached.
Although the latest version supports not only s tyled text, but also multi
ple script systems, TextEdit does not support tabs or margins. TextEdit
was intended for use in dialog boxes and other places where a limited set
of text-editing services were needed.

TextEdit has fewer routines th an QuickDraw, the basic graphics pack
age of the operating system. However, text editing is more complex than
graphics-just look a t the data stmctures involved as described in Inside
Macintosh. Fortunately, most applica tions do not have to worry about the
details. Those that do can take advantage of some customization hooks
put in to TextEdit.

~ Compatibility and TextEdit

Call Gestalt \1\rith a selector of gestaltTextEditVersion to get the version of
TextEdit. Five values are defined:

• gestaltTEl (= 1) for TextEdit in the Mac Ilci ROM

• gestaltTE2 (= 2) for TextEdit with 6.0.4 Script Systems on the Mac
Ilci (which fixes Script Manager bugs in the Mac Ilci)

• gestaltTE3 (= 3) for TextEdit with 6.0.4 Scrip t Systems on all
machines except the Mac Ilci

• gestaltTE4 (= 4) for TextEdit in System 6.0.5 and la ter

• gestaltTES (= 5) for TextEdit in 7.0

Note that if the current system is using an older version of TextEdit, this
call will fail.

TextEdit is compatible with the Script Manager starting with version 2.
The TEFeatureFlag routine is available starting with version 4.

~ Script Manager Support in TextEdit

The biggest change in the System 7 version of TextEdit is that it now fu lly
supports the Script Manager. This is good news for anyone developing an
applica tion that will be internationalized, because TextEdit will handle
more of the low-level work.

Under System 7, TextEdit nO\"' supports text from more than one script
system and correctly deals with scripts having different primary line
directions. That is, TextEdit now fully supports scripts th at are written
right-to-left (for example, Hebrew and Arabic), as well as those written

124 ..,. Chapter 9 TextEdit and International Services

left-to-right (for example, English, Spanish, French, and so on). Pre
viously, TextEdit supported multiple styles of text but not scripts. TextEdit
also now correctly highlights text written with scripts having different
primary line directions, and it properly handles the ambiguous case when
the user clicks the mouse between two characters of different line direc
tions. In this case, TextEdit displays a split caret, where the high caret (the
top portion) marks the primary caret position for the character offset in
the primary line direction. The low caret marks the secondary caret posi
tion for the character offset in the secondary line direction. Last, TextEdit
correctly handles the movement of the cursor as the user presses the
arrow keys to move through text of mixed directions.

TextEdit also maintains synchronization between the keyboard and the
display. The user can type on a keyboard using one script and display
the characters on the screen using another script, and TextEdit translates
the keystrokes into characters to be displayed. If the user clicks the mouse
on a character using another script, TextEdit automatica ll y switches the
current script to match that of the character.

Finally, TextEdit now supports the double-byte characters used for lan
guages such as Chinese, Japanese, and Korean. It therefore performs the
usual action when the user presses the arrow keys or the Backspace key.
TextEdit uses the Script Manager to do this and other functions .

..,. Using the New TextEdit Routines

Call the TEFeatureFlag routine to control or check the status of features
available in TextEdH: outline highlighting, text buffering, whether inline
input services are available, and whether they are currently in use. This
routine has a unique interface. The parameters for this routine are the
feature you are interested in (highlighting or buffering), a handle to the
TextEdit record of interest, and an action code. If the action code is TEBit
Set, the feature will be enabled, and if the action code is TEBitClear, the
feature is disabled. If the action code is TSBitTest, the routine returns the
action code corresponding to the status of that feature. If it returns TEBit
Set, you know the feature is enabled; if it returns TEBitCiear, you know it
is not enabled.

Outline highlighting, illustrated in Figure 9-1, provides TextEdit with a
behavior similar to MPW. When a window in the background has
selected text, an outline is drawn around the selection. This allows the
user to see what was selected, but it's also clear that text is not in the front
window. Currently, most applications remove all highlighting from selec
tions in background windows.

.,.. Improvements In TextEdlt 125

0 HD:MPW:Sys71ncludes:Cincludes:TeHtEdit.h t!l
~truct TEStyleRec { KJ

short nRuns ; /*number o~;

~~~~~~ :: t~ l~!~ ~ ab; ~=~~~~: r ~ 11 11 11 

long teRefCon; /*reserved~ 
Nu I I StHand I e nu I I Sty I e ; /*Hand I e tm 
Sty I eRun runs I 800 1 1 ; /*ARRAY I 0 i!Ui 

} ; mill 
typedef struct TEStyleRec TESty leRec; ~ 

MPw shell 101 n::::mn::::::m:m:nm::::::::::m::m:m::m:::m::m::::::::m:m:::m::::::n:um::::mu c I2J 

HD:MPW:Sys71 ncludes:C I ncludes:TeHtEdit.h 
~truct TEStyleRec { 

short nRuns ; /*number o 
shor t nStyles; /*s ize of 
STHandle styleTab; 

I 
/ *hand le t 

LHHandle lhTab; / *hand le t 
long teRefCon ; / *reser ved 
Nu l IStHandle nul IStyle; / *Handle t 
Sty leRun runs£8001 1; /*ARRAY 10 

} ; 

typedef struct TEStyleRec TESty leRec; 

Figure 9-1 . Outline highlighting 

Text buffering is not directly visible to users. Rather, it provides a signif
icant boost to the performance of TextEdit when used with scrip t systems 
for languages such as Japanese, Chinese, and Korean. When this feature is 
enabled, TextEdit uses a buffer for storing the input from each call to 
TEKey. You can insert the entire buffer into your TERecord at one time 
rather than inserting the characters one at a time. A TERecord is the pri
mary data structure used by TextEdit, and is described in detail in Inside 
Macintosh. 

You must be careful in using the text buffering feature because the 
buffer TextEdit uses to store characters is a global, or system-wide, 
buffer-that is, there is only one such buffer in the entire operating sys
tem. Therefore, to avoid having the characters typed by your user in 
another window, you must call TEidle frequently, especially before any 
pause longer than a couple of clock ticks. Be careful to avoid turning text 
buffering off in the middle of a two-byte character. If you are using more 



126 .,. Chapter 9 TextEdit and International Services 

than one TERecord in your application, it's best to wait for an idle event 
to enable or disable text buffering in the second record. 

The inline input services are used with two-byte character codes. These 
new input services allow double-byte characters to be typed and con
verted inline instead of requiring the use of a special input window. If 
your application can use these new services, then you should set 
useTextEditServices in the application's 'SIZE' resource. 

Your application can customize the behavior of TextEdit by passing the 
address of a procedure to the TECustomHook routine. The parameters 
for this routine are the identifier of the TextEdit hook procedure you are 
replacing, the address of the new procedure, and the handle to the 
affected TERecord. You can change the following six hook procedures: 

• TEEOLHook-Determines whether an incoming character is 
an end-of-line character. If it is, it sets status flags and returns. 
The default is to compare the incoming character with a carriage 
return. ' 

• TEWidthHook-Measures various portions of a line of text. In 
practice, TextEdit uses this procedure only when the Roman script 
system is in use. When a non-Roman script is in use, TextEdit calls 
the nTEWidthHook procedure instead. When the Roman script 
system is in use and you have defined a new TEWidthHook 
procedure, TextEdit calls your procedure. Otherwise, it calls its 
nTEWidthHook procedure. The default procedure calls Text
Width. 

• nTEWidthHook-Works the same as the TEWidthHook proce
dure. An nTEWidthHook procedure can use TextEdit's measuring 
routine when working with a non-Roman script. You can also cus
tomize this routine, but be sure that your new routine works cor
rectly with non-Roman scripts. The default procedure calls 
Char2Pixel or TextWidth, depending on the curr~nt script system. 

• TEDrawHook-Draws the components of a line of text. The 
default procedure calls DrawText. 

• TEHitTestHook-Determines the character closest to the specified 
position. The default procedure calls TextWidth and then Pixel2-
Char and returns. 

• TEFindWord-Finds word breaks in a line of text. It replaces the 
previous hook procedure, WordBreak. If you replace the existing 
TEFindWord procedure with your own and your procedure does 
not handle non-Roman scripts, then call the existing procedure for 
such cases. 



..,. Improvements in TextEdit 127 

The nTEWidthHook and TEFindWord hook procedures are new with 
System 7. 

Because TextEdit is now using the Script Manager's FindWord proce
dure, the definition of a word has changed. Previously, TextEdit's own 
WordBreak procedure allowed punctuation marks as part of a word; this 
is no longer the case except with Roman scripts. Also, TextEdit now 
selects a run of spaces as a word, whereas previously it would select only 
a single space. 

The TEKey routine, the basic TextEdit routine tha t processes all incom
ing characters, has been enhanced so that it does not delete a style if the 
user backspaces to the beginning of that style. If the user does not use this 
style by clicking somewhere else, or continues deleting characters, then 
the style is removed. 

The TEGetPoint routine, which returns the coordinates of the lower 
left point of the character at the specified offset, has also been enhanced 
in System 7. It now works when no text is in the TERecord. When the 
offset is a t the end of a line (an ambiguous position), it returns the coordi
nates for the beginning of the next line. 

The TESetStyle routine, introduced in Inside Macintosh, Volume V, has 
been enhanced to accept a new mode named do Toggle. This mode, when 
used in conjunction with other modes such as doFace, will remove or add 
the specified characteris tics from the current selection if they are either 
present or absent across the selection, respectively. For example, if the 
mode is doToggle + doFace and the entire selection is in italics, then the 
italic style will be removed from the entire selection. 

To find out whether an attribute (font, size, color, and so on) is continous 
in the current selection of a TEHandle, call TEContinuousStyle with the 
attribute in which you are interested. Call TENumStyles to find out the 
number of style changes contained in a range of text in a TEHandle. 

The TESetJust routine now has a new set of names for th e justification 
modes that be tter describe what TextEdit will do with scripts having 
either primary line direction. Previously, these choices were named 
teJustLeft, tejustCenter, teJustRight, and teForceLeft. The new names for 
the justification modes are as follows. 

• teFlushRight (with the same effect as the old teJustRight) 
• teFlushLeft (previously teForceLeft) 

• teCenter (previously teJustCenter) 
• teFiushDefault (previously teJustLeft) 



128 ..,. Chapter 9 TextEdit and International Services 

The old constants are still defined for compatibility. In the new 
teFlushLeft mode, justification depends on the direction of the script. For 
left-to-right scripts, text will be left justified; for right-to-left scripts, text 
will be right justified . 

.,.. Improvements in the Script Manager 
The Script Manager contains many routines. Some of these routines are 
implemented by the Script Manager, and others are primarily implemented 
in a script system. A script system is a set of external code segments and 
resources that support a particular script or writing system. For example, 
ZhongwenTalk provides support for the Chinese writing system. The 
Roman Script System supports the writing system used by English and the 
majority of the European languages. A user can install one or more script 
systems on his or her Macintosh. However, the Roman script system is 
built into the operating system and is therefore available on all machines. 

Note that the Script Manager is intimately tied to the International Util
ities. The Script Manager and the script systems provide support for text 
services in various languages. The International Utilities support the mea
surement system (metric or not), number formats, time formats, date for
mats, and currency formats for a particular country and language. 

A given script system might support more than one language. For 
example, the Roman Script System supports English, French, German, 
Italian, and most of the other European languages, with the exception of 
Greek. The Devanagari Script System supports Hindi, Nepali, and San
skrit. Furthermore, some languages are supported in one or more coun
tries or regions. For example, the English language is used in the U.S., the 
United Kingdom, Ireland, Canada, Australia, and New Zealand. Each of 
these countries has a different currency; all of them, with the exception of 
the U.S., use the metric system of measurements. The names of the 
months are spelled slightly differently from country to country. 

When Apple prepares a version of the system software for a particular 
country, the internationalized system may include another script system 
in addition to the Roman script system. It will also include a set of inter
national resources customized for that country. Codes for the various 
script systems, languages, and regions are listed in Table 9-1. These codes 
are used by various Script Manager routines and in the International Util
ities Package. Note that although codes are defined for most of the 
world's languages, Apple is not shipping a version of the Macintosh sys
tem software for a ll of them yet. 



.,.. Improvements in the Script Manager 129 

Table 9-1 . Script interface systems, language codes, and region codes 

Script Code 
smRoman 

Language Code(s) 
langEnglish 

langFrench 

langGerman 

langltalian 
lang Dutch 
langSwedish 
langSpanish 
langDa nish 
langPortuguese 
langNorwegian 
langFinnish 
langicelandic 
langMaltese 
langTurkish 
langLithuanian 
langEstonian 
langLettish = JangLatvian 
langLappish 
JangFaeroese 
JangGreek 
langCroatian 
langFlemish 
lang Irish 
langRoma nian 
langCzech 
langSiovak 
langSiovenian 
langAlbanian 
langWelsh 
lang Basque 
langCatalan 
lang Indonesian 
langTagalog 
langSomali 
langSwahili 

Region Code(s) 
verUS 
verBritain 
verAustralia 
verlreland 
verFrance 
verFrCanada 
verFrSwiss 
verFrBelgiumLux 
verGermany 
verGrSwiss 
verltaly 
verNetherlands 
verSweden 
verSpain 
verDenmark 
verPortugal 
verNorway 
verFinland 
verlceland 
verMalta 
verTurkey 
verLithuania 
verEs tonia 
verLatvia 
verLapla nd 
verFaeroelsl 
(Greek in Roman script) 
verYugoCroa tian 



130 ...,. Chapter 9 TextEdlt and International Services 

Table 9-1. Script interface systems (continued) 

Script Code 

smGreek 

smTradChinese 

smSimpChinese 

smJapanese 
smKorean 

smArabic 

smExtArabic 

smHebrew 

smCyrillic 

Language Code(s) 
langRuanda 
langRundi 
langChewa 
langMalagasy 
langMalayRoman 
langQuechua 
langGuarani 
langAymara 
lang Latin 
langEsperanto 
langJavaneseRoman 
iangSundaneseRoman 

langGreek 

langTradChinese 

langSimpChinese 

lang}apanese 

lang Korean 

langArabic 
lang Urdu 
langFarsi = langPersian 
langAzerbaijanAr 
langPashto 
langKurdish 
langUighur 
langKashmiri 
langMalayArabic 

langSindhi 

lang Hebrew 
lang Yiddish 
JangRussian 
lang Ukrainian 
JangByelorussian 
langSerbian 
langUzbek 
JangKazakh 
langMacedonian 
langBulgarian 
langMoldavian 
langKirghiz 

Region Code(s) 

verGreece 
verCyprus 

verTaiwan 

verChina 

verJapan 
verKorea 

verArabic = verArabia 
verPakistan 
verlran 

verlsrael 

verRussia 



.,.. Improvements in the Script Manager 131 

Table 9-1. Script interface systems (continued) 

Script Code 

smSlavic = smEastEurRornan 

srnGeorgian 

smArmenian 

smDevanagari 

sm Gurmukhi 

sm Gujarati 

smOriya 

smBengali 

smTamil 

smTelugu 

smKannada 

smMalayalam 

smSinhalese 

sm Burmese 

smKhmer 
smThai 

smLaotian 

smTibetan 

smMongolian 
smEthiopic = smGeez 

sm Vietnamese 

smUninterp 

smRSymbol 

Language Code(s) 
langTajiki 
iangMongolianCyr 
lang Tatar 
langTurkmen 
langAzerbaijani 

langPolish 
langHungarian 

langGeorgian 

langArmenian 
langHindi 
langSanskrit 
langMarathi 
langNepali 

langPunjabi 
langGujarati 

langOriya 
lang Bengali 
langAssamese 

lang Tamil 

langTelugu 

langKannada 

langMala yalam 

langSinhalese 

langBurmese 

langKhmer 
lang Thai 

langlao 

lang Tibetan 
langDzongkha 

langMongolian 
langAmharic 
langTigrinya 
langGalla = langOromo 
lang Vietnamese 

Region Code(s) 

verPoland 
verHungary 

verlndiaHindi 

verThailand 

(Fon t script is uninterpreted 
symbols) 
(Font script is right-left symbol) 



132 ~ Chapter 9 TextEdit and International Services 

Table 9-2 lists the codes for the various calendars supported by the 
Macintosh system software. These codes are also used by various Script 
Manager routines and in the International Utilities Package. 

Table 9-2. Script Manager calendar codes 

Calendar Code Name 
cal Gregorian 
caiArabicCivil 
caiArabicLunar 
caljapanese 
caljewish 
cal Coptic 
cal Persian 

Calendar Value 
0 

1 

2 

3 

4 

5 

6 

Before looking at the rou tines of the Script Manager, you should know 
about one important aspect of resources and the Script Manager. Script 
systems are currently numbered from 0 to 32, although the Script Man
ager can handle as many as 64 scripts at a time. Resources associated with 
a script are numbered within the resource lD range of that script. The 
Roman script system has the largest range of resource IDs, 0 to 16383, 
because so many languages and fonts are available for them. For all other 
script systems, the range of resource IDs begins at 16384 + (5 12 * 
(scriptCode - 1)). ln particular, 'FOND' resources are numbered in the 
range associated with the script for the language using tha t font. The Font 
Manager uses the resource IDs to perform the usual action, such as substi
tuting another font belonging to the same script when the requested font 
is not available. 'FOND' IDs 0 and 1 are special values for the system and 
application fonts. Even though they are in the range of the Roman script 
system, they are not necessarily Roman fonts . 

..,. Using the Script Manager 

To understand the new routines of the Script Manager, you will have to 
understand the routines previously available. Notice that most of the rou
tines in the Script Manager work at a lower level than those of the 
TextEdit routines. This explains why it is difficult to retrofit the Script 
Manager into existing applications, and why the cost of designing them 
into the first version of an application isn' t high. 



..,.. Improvements in the Script Manager 133 

Important ..,.. Once again, if there is any chance that your software will be used 
with a n on-Roman script, support the Script Manager in version 1 
of your application. It will save you a lot of work in the future. 

The routines of the Script Manager are listed in Ta ble 9-3 along with a 
brief description of their purpose. These routines are grouped by the cate
gories defined in Inside Macintosh, Volume VI. Routines that a re new with 
System 7 are so marked . 

Table 9-3. The Script Manager routines 

CategonJ 
Working with global and 
local script variables 

Checking and setting 
system variables 

Setting keyboard script 
Getting script informa tion 

Getting character 
information 

Drawing and editing text 

Routine Name 
GetEnvirons 
SetEnvirons 
GetScript 
SetScript 
GetAppFont 

GetDefFon tSize 
GetMBarHeigh t 

GetSysFont 

GetSysJust 
SetSysJust 
KeyScript 
FontScript 

IntlScript 

Font2Script 
Char Byte 
CharType 
Parse Table 

Char2Pixel 

NChar2Pixel (new) 

Purpose 
Gets Script Manager (global) variables 
Sets Script Manager (global) variables 
Gets script system (local) variables 
Sets script system (local) variables 
Gets the resource ID of the current 
application 'FOND' 
Gets the default font size 
Gets the height of the menu bar in the 
current system font 
Gets the resource ID of the current system 
'FOND' 
Gets the current default line direction 
Sets the current default line direction 
Sets the keyboard or keyboard script 
Gets the script code for the current font in 
the current grafPort 
Gets the script code for the current font in 
the current grafPort for use with the 
International Utilities Package 
Translates a font JD into a script code 
Is byte part of a double-byte character? 
What type of character is this byte? 
Returns a table used for parsi ng characters 
as single-bytejdouble-byte 
Finds position for caret given a pointer to 
text in a buffer 
Finds position for caret given a pointer to 
text in a buffer and intercharacter spacing 



134 ..,. Chapter 9 TextEdlt and International Services 

Table 9-3. The Script Manager routines (continued) 

Categont 

Formatting text 

Modifying text 

Routine Name 
Pixel2Char 

NPixel2Char (new) 

Draw Just 

NDrawjust (new) 

Find Word 
NFindWord (new) 

HiLiteText 
Measure just 
NMeasureJust (new) 

FindScriptRun 

GetFormatOrder 

Portion Text 

NPortionText (new) 

StyledLineBreak 

Visible Length 

LowerText 

StripText (new) 

StripUpperText 
(new) 

Transliterate 

UpperText 

Purpose 
Finds nearest character in buffer given a 
pixel width 
Finds nearest character in buffer given a 
pixel width and intercharacter spacing 
Draws text in the current location, font, 
style, and size 
Draws text in the current loca tion, font, 
style, size, intercharacter spacing, and 
scaling factors 
Returns word boundaries in buffer 
Returns word boundaries in buffer using 
'itl2' resources 
Selects characters to be highlighted 
Measures fully justified text 
Measures fully justified text given 
intercharacter spacing and scaling 
parameters 
Separates text into blocks using the same 
script 
Gets the order in which format runs 
should be drawn based on line direction 
of the text 
Calcu lates how to allocate white space 
when justifying text 
Calculates how to allocate white space 
when justifying text given intercharacter 
spacing and scaling parameters 
Finds where to break a line of text on a 
word boundary 
Gets the length of text excluding the 
trai ling white space 
Converts text to lowercase using 
international resources (also known as 
LwrText) 
Strips diacritical characters from text using 
international resources 
Strips diacritical characters from text using 
international resources, and converts 
remaining characters to uppercase 
Converts characters from one script to 
another 
Converts text to uppercase using 



..,. Improvements in the Script Manager 135 

Table 9-3. The Script Manager routines (continued) 

Categont 

Substituting text 

Truncating text 

Tokenizing text 

Working with dates 
and times 

Working with locations 

Converting numbers 

Routine Name 

ReplaceText (new) 

TruncString (new) 

TruncText (new) 

lnt!Tokenize 

InitDateCache 

String2Date 
String2Time 
LongDate2Secs 

LongSecs2Date 

Toggle Date 

Valid Date 
Read location 

Writel ocation 

Str2Format 

Format2Str 

FormatX2Str 

Forma tStr2X 

Purpose 

international resources (also known as 
UprText) 
Replaces all occurrences of a target string 
with a replacement string 
Checks that an Str255 string fits into the 
specified pixel length, and truncates the 
string if necessary using international 
resources 
Checks that text specified by a pointer and 
count fits into the specified pixel length, 
and truncates the string if necessary using 
international resources 
Breaks text into lexical tokens using 
international resources 
Prepares for con version process 

Parses text into dateTime record 
Parses text into dateTime record 
Converts time in LongDateRec format to 
LongDateTime format 
Converts time in LongDateTime format to 
LongDateRec format 
Modifies a LongDateRec by incrementing 
or decrementing fields 
Validates a LongDateRec 
Gets the current geographical information 
from parameter RAM (longitude, latitude, 
and time zone) 
Sets the current geographical information 
from parameter RAM 
Converts a string into a canonical number 
format using international resources 
Converts a canonical number format into a 
string using international resources 
Converts a SANE floating-point number to 
a string using international resources 
Converts a string to a SANE floating-point 
number using international resources 

Let's now look at the new Script Manager routines. The System 7 ver
sion of the Script Manager provides new versions of several key routines: 
NChar2Pixel, NPixel2Char, NDrawJust, NMeasureJust, NFindWord, 



136 .., Chapter 9 TextEdit and International Services 

and NPortionText. These routines differ from their predecessors, which 
are still supported for compatibility, because these new routines work 
with intercharacter spacing, with multiple s tyle runs over multiple lines, 
and with scaling parameters. 

StripText and StripUpperText are new routines tha t your application 
can call to s trip out diacritica l characters and convert characters to upper
case, respectively. 

Call ReplaceText to substitute all occurrences of a target string with a 
new string. Call TruncString or Tru~cText, depending on the way in 
which the text is stored internally, to decide if a string is too long to fit into 
the specified number of pixels. These two routines are useful in managing 
your application's user interface. 

Last, the GetEnvirons, SetEnvirons, GetScript, and SetScript rou
tines, while not new with System 7, do have some new features. These 
routines all require a verb, which is simply an integer. This verb specifies 
the information that you want to set or get. The Script Manager maintains 
some globals for a ll scripts that are accessed by the GetEnvirons and 
SetEnvirons routines . It also maintains some local variables for each 
active script system. These are accessed by the GetScript and SetScript 
routines . Refer to the Worldwide Software Overview chapter of Inside 
Macintosh, Volume VI for the details . 

.,.. Compatibility and the Script Manager 

Call Gestalt with a selector of gestaltScriptMgrVersion to get the version 
of the Script Manager. Call Gestalt with a selector of gestaltScriptCount 
to get the number of script systems ins talled on the current machine . 

..,. Improvements to International Features 
Improvements in international features fall into two categories: improve
ments to the International Utilities Package and to the international 
resources. Although they have changed considerably since then, both 
were part of the first version of the Macintosh operating system . 

.,.. The Inte rnational Utilities Pac kage 

The International Utilities have always included a set of routines for compar
ing tvvo strings. With System 7, another set of these string comparison rou
tines h as been added, with this new set allowing your application to 
explicitly specify which 'itl2' resource to use in making the comparisons. The 
old set of routines, which are fully supported in System 7, were named 



.,.. Improvements to International Features 137 

IUCompString, IUMagString, IUEqualString, and IUMagiDString. The 
new set of routines are named IUCompPString, IUMagPString, IUEqualP
String, and IUMagiDPString. The letter Pin these names stands for paral
lel, as in parallel routines. 

Several new routines make it easier to compare strings in different 
scripts. These routines use the 'itlm' resource discussed below. Call 
IUScriptOrder, passing two script codes, and it returns with their sorting 
order. Call IULangOrder, passing two language codes, to indicate in 
which order the two specified languages should be sorted. These two calls 
establish the sorting order of scripts and languages. Call IUStringOrder, 
passing two strings, along with their script and language codes, and it 
returns their proper sorting order. Call IUTextOrder, passing two strings 
defined by a pointer and a length, along with their script and language 
codes, and it returns their proper sorting order. 

The IUGetlntl and IUSetlntl routines allow your application to get 
and set the 'itiO', 'itll ', 'itl2', and 'itl4' resources. These two routines, which 
have previously been part of the operating system, are now joined by two 
new routines, IUClearCache and IUGetltlTable. Call IUClearCache to 
clear the cache containing 'itl2' and 'itl4' resources. These resources con
tain information on how to calculate word breaks, compare strings, sort 
s trings, and convert strings to numbers, and they are shared by all active 
applications. lf your application supplies additional 'itl2' or 'itl4' resources, 
then it should call IUClearCache when it is finished using these 
resources. In effect, this call forces the system to get these resources from 
the System file the next time they are required. Call IUGetltlTable, speci
fying a script code and a table code (for the word select break table, the 
word wrap break table, or the number parts table), to get the handle to 
the resource to which the table belongs and the offset to the specified 
table in that resource. 

The IUDateString and IUTimeString routines allow your routine to 
get a string containing the date and time, respectively. These routines, 
previously part of the operating system, are joined by a new pair of rou
tines named IULDateString and IULTimeString. These new routines 
return the same strings as their similarly named predecessors, but take 
in put data in the form of a LongDateFormat instead of the forma t 
returned by the GetDateTime routine. 

~ The Internationa l Resources 

The international resources are part of the system software and are kept 
in the System file. These resources collectively provide the system software 
and your application with all the information required for customizing the 



138 ..,. Chapter 9 TextEdit and International Services 

software for a country, language, and writing system in use at runtime. They 
are defined in the Rez format in a file provided as part of MPW named 
SysTypes.r. Let's briefly look at each of these resources to see what they con
tain. The international resources have grown in number and complexity 
since the Macintosh was first introduced-from two international resource 
types defined then to 14 different types now. To understand the changes 
System 7 brings to these resources, let's look at each resource type in tum, 
reviewing both the old and new contents . 

...,. The 'itlc' Resource 

Each system has only one 'itlc' resource which always has resource ID 0. 
This resource contains the following, among other information: 

• The system script code 

• The preferred region code 

• Script Manager flags specifying whether the keyboard icon should 
always be displayed and whether to use a split caret for a bidirec
tional script 

The preferred region code has been added to this resource in System 7 
(Table 9-1 gives a list of region codes). The region code identifies a partic
ular localized version of the Macintosh system software. The Script Man
ager maintains this value in a global named smRegionCode . 

...,. The 'itlb' Resource 

An 'itlb' resource is attached to each script system and specifies the follow
ing information: 

• The resource IDs for associated 'itlO', 'itll', 'itl2', 'itl4', 'KCHR', and 
'kcs#' resources 

• The default language code 

• The number and date representation codes 

• Information used by the Script Manager to initialize this script 
system 

Additional information has been added to this resource, but to preserve 
compatibility with previous versions of this resource, the new informa-



~ Improvements to International Features 139 

tion has been added to an exten sion record. The new information 
includes the following. 

• Default 'FOND' lD and font size for the system font, application 
font, and Help Manager 

• Default 'FOND' lD for a monospace font, a variable-width font, 
and a small-variable font 

• A lis t of styles that this script supports 

• A style to indicate a liases 

..,.. The 'itlm' Resourc e 

The 'itlm' resource, new with System 7, specifies the sorting order for 
script codes, language codes, and region codes in a set of three tables. The 
first table contains pairs of script codes and language codes, listed in the 
preferred order of script codes. The second table contains the same infor
mation, but it is listed in the preferred order of language codes. The third 
table contains pairs of region codes and language codes, listed in the pre
ferred order of region codes . 

..,.. The 'itiO' Resource 

The 'itlO' resource, previously known as the 'INTL' resource ID 0, contains 
the short formats for dates, times, numbers, and currency. Each script 
system has at least one 'itlO' resource, the default 'itlO' resource being spec
ified in the script's 'itlb' resource. This resource also contains a region 
code . 

..,.. The 'itl1 ' Resourc e 

The 'itll ' resource, previously known as the 'INTL' resource ID 1, contains 
the long formats for dates, times, numbers, and currency. It also contains 
the names of the days, the names of the months, and a region code. Each 
script system has at least one 'itll' resource, the default 'itll ' resource being 
specified in the script's 'itlb' resource. 

The format of this resource assumes that a ll ca lendar systems have 
seven days and twelve months. Unfortunately, this isn' t true, so the 
resource has been extended with System 7 to include additional informa
tion. To maintain compatibility with the previous format, the new infor
mation was added to the end of the resource after first putting a "magic" 
word in front of the new data. Any system software or development tools 



140 Ill> Chapter 9 TextEdit and International Services 

(such as DeRez) that knew about the 'itll' resource were modified to look 
for this magic word. 

The new 'itll' resource contains the following additional information: 

• A version number and a format number for the extended resource 
format 

• The calendar code (refer to Table 9-2 for a list of all calendar 
codes) with which this resource should be used 

• A list of extra day names and their abbreviations, if more than 
seven days are used 

• A list of extra month names and their abbreviations, if more than 
twelve months are used 

• Additional date separators to be used by the String2Date routine 

..,. The 'itl2' Resource 

Each script system has at least one 'itl2' resource, the default 'it12' resource 
being specified in the script's 'itlb' resource. The information contained in 
this resource includes the following: 

• The code and tables for string comparisons 
• Tables for case conversion and the removal of diacritical marks by 

the Transliterate, LowerText, UpperText, StripText, and Strip
UpperText routines 

• Tables for finding word breaks by the FindWord routine 
• For non-Roman fonts, a table giving the location of any Roman 

characters in the font for use by the FindScriptRun call 

This resource also has a new header, making it easier to locate the various 
types of information in this resource. 

If your application needs different string-comparison behavior, you can 
create an 'itl2' resource to be used by your application. You might need to 
do this to support a language that is not supported by the existing soft
ware. If you do use your own 'itl2' resource, be sure to call the IUClear
Cache routine (described above), or your resource will linger on . 

..,. The 'ltl4' Resource 

Each script system has at least one 'itl4' resource, the default 'itl4' resource 
being specified in the script's 'itlb' resource. The information contained in 
this resource includes the following: 



.,. Improvements to International Features 141 

• A character used to mark truncated text (in English it is the 
e llipsis: ... ) 

• Code and tables for the IntlTokenize routine 
• Formatting information for the Str2Format, Format2Str, 

FormatXStr, and FormatStr2X routines 

• A new header with offsets to the code and tables 

The 'itl4' resource existed before System 7, but it is now documented for 
the first time . 

.,.. The 'KCHR' Resource 

The 'KCHR' resource contains tables for mapping key codes to character 
codes. Each script system has at least one 'KCHR' resource, and the 
default 'KCHR' resource is specified by ID in the script's 'itlb' resource. The 
'KCHR' resource for the Roman scrip t has numerous small changes to the 
mapping tables . 

.,.. The 'kcs#', 'kcs4', and 'kcs8' Resources 

These resources, new with System 7, are color icons for the keyboard. 
They match the resource ID of their corresponding 'KCHR' resource. The 
'kcs#', 'kcs4', and 'kcs8' resources are identical in format to the 'ics#', 'ics4', 
and 'ics8' resources. In other words, they are icons for 1-bit, 4-bit, and 
8-bit displays. The default 'kcs#', 'kcs4', and 'kcs8' resources are specified 
by ID in the script's 'itlb' resource. Note that keyboards only have small 
icons (16 by 16) but not large icons (32 by 32). These keyboard icons are 
used in the Keyboard control panel and in the Keyboard menu . 

.,.. The 'KCAP' Resource 

The 'KCAP' resource contains the physical layout of keyboards, which 
used to be contained in the Key Layout file installed in the System Folder. 
Starting with System 7, the 'KCAP' resource is in the System file. Each 
keyboard has one 'KCAP' resource, whose resource 10 matches the key
board code. The keyboard codes are listed in Table 9-4 (after Inside Macin
tosh, Volume VI). 



142 ..,. Chapter 9 TextEdit and International Services 

Table 9-4. Keyboard codes 

Keyboard Type (hex) 

$1 
$2 
$3 
$103 
$4 
$5 
$6 
$7 
$B 

Kevboard Name 
Standard ADB 
Extended ADB 
Macintosh 128K and 512K (U.S.) 
Macintosh 128K and 512K (International) 
ISO Standard ADB 
ISO Extended ADB 
Portable Standard 
Portable ISO 
Macintosh Plus 

~ The 'KSWP' Resource 

The 'KSWP' resource contains a table of entries specifying which key com
binations can be used to switch from one script to another. 

~ The 'itlk' Resource 

The 'itlk' resource contains key-code mapping information that is used to 
make the international keyboard layouts work on all keyboards. This 
resource is used by the KeyTrans routine. The 'itlk' resource exis ted before 
System 7, but is documented for the first time . 

...,. Writing International Software 

Warning II> 

Software local ization is the process of adapting software to a particular 
country or language. Converting an application to another European lan
guage is rela tively easy to support, although there are some nontrivial 
details. If you follow Apple's guidelines (see " Get Info" for references), 
your application can be easily localized into most European languages by 
translators who have little technical knowledge, because most of the 
European languages behave similarly to English. 

Some kinds of software, even if localized, may not be useful in 
other countries. For example, accounting methods are quite differ
ent in Europe, so most American accounting packages would 
require considerably more work to be useful in Europe. 

To fully support localization, you need to use the Script Manager. 



.,.. Conclusion 143 

Working with KanjiTalk or the Arabic script system is more difficult than 
simply ensuring that your application will work in German or Portu
guese, because Japanese and Arabic use very different writing systems. If 
your application is not text-intensive-that is, it isn' t a word processor or 
publishing system-you won't have to do a lot of work to use the Script 
Manager. Programmers developing word processors and publishing sys
tems, on the other hand, will have to do quite a bit of work to ensure that 
their applications can be used with a variety of script systems. 

Be aware also that localized applications do not necessarily support the 
use of multiple languages and scripts. To allow users to write in multiple 
languages and scripts requires more work than just supporting the Script 
Manager. 

.,.. Conclusion 

Get Info .,. 

In this chapter, you 've looked at the latest version of TextEdit, which 
provides a standard set of text-editing capabilities. You've also looked at 
the Script Manager and the International Utilities Package, which provide 
services that can ensure that your application can be used in countries 
outside the U.S. 

The computer market in the U.S. is growing, but at a slower rate than in 
past years. The computer markets in most of the rest of the world are 
growing quickly. If your application can be localized and can support 
non-Roman script systems, then your application can participate in the 
fast growth of the Macintosh in these other countries. 

For more information on TextEdit, refer to the TextEdit chapter of 
Inside Macintosh, Volume VI. You may also want to refer to the 
TextEdit chapters of Inside Macintosh, Volumes I, IV, and V. 

For more information on internationalization and the Script 
Manager, refer to the Worldwide Software Overview chapter of 
Inside Macintosh, Volume VI. Another useful reference is Macintosh 
Worldwide Development: Guide to System Software, available from 
APDA, which explains the basics of script systems, the Script 
Manager, the International Utilities Package, and the international 
resources. 

The Software Licensing group at Apple licenses all the localized 
versions of the Macintosh operating system at reasonable rates. If 
your application uses the Script Manager, then you should get a 
variety of localized systems to test with. Apple has also made all 
the international systems and keyboards available to companies 
that are members of the Apple Partners and Associates programs. 



1 0 ~ The Data Access Manager 
and the Data Access 
Language 

...,. Introduction 

The database management systems that run on mainframes and mini
computers are large, complex applications, which provide a way to store 
enormous amounts of complex data and ways for many users to access 
this da ta simultaneously. This cannot be done- yet-on microcom
puters. Many organizations have large amounts of data stored on larger 
host computers. The Data Access Language and the Data Access Manager 
provide a simple, relatively easy way for Macintosh applications to tap 
into these vast amounts of data. 

In this chapter, you' ll first look at why the Data Access Language (DAL) 
was invented and the types of tasks for which it can be used. You'll look 
at this language and its re lation to the SQL database access language. 

Following this, you 'll look at the architecture of the Data Access Man
ager (DAM). This component of the operating system provides an API to 
access databases and other data. Although it can be used with the Data 
Access Language, this manager is a general interface and can be used with 
other access languages as well. In the future, it will be used to access data 
located on various platforms and in various databases besides those sup
ported today. You will look at the high-level and low-level routines pro
vided by the Data Access Manager. You'll a lso look at the question of 
when to use the DAL and when to use proprietary database access 
methods. 

145 



146 ~ Chapter 1 0 The Data Access Manager and the Data Access Language 

.,.. Why the Data Access Language? 

Note .,.. A database management system (DBMS) is a collection of software 
(and sometimes hardware) that provides a set of services for storing 
and retrieving data. A database is a file of data maintained by a 
DBMS. 

Imagine you're writing a system that needs access to two databases. 
One of them is an Ingres database running on VAX under VMS, and the 
other is an IBM DB2 database running on a mainframe under MVS. To 
write the software for this system, you'd need to understand and write 
code to do the following: 

1. Set up a communications link from a Macintosh to both the VAX 
and the IBM mainframe. You might have to communicate with 
the VAX using AppleTalk for VMS, and use a 3270 data stream 
protocol to talk with the mainframe. The code for these links must 
be able to initialize the communications link and handle any 
errors that might arise. 

2. Start up the appropriate DBMS on the host. In this chapter, the 
host will also be called the data server. 

3. Open the user's database. 

4. Retrieve the information the user wants to see, performing any 
intermediate calculations that might be needed. 

5. Close the database. 

6. Quit the database management system. 

7. Shut down the communications channel. 

Whew! If it sounds like you'd have to write a lot of code, you're right: 
"Each step" would require a lot of code. Fortunately, the Data Access Man
ager and the Data Access Language can simplify this whole process as 
follows: 

1. Call InitDBPack to initialize the Data Access Manager. 
2. Call DBNewQuery to create a query record. 

3. Call DBStartQuery to complete the query record, initiate a ses
sion with the host, start up the DBMS, open the database, send 
the query, and start executing the query. 



Ill>- Why the Data Access Language? 147 

4. Call DBGetQueryResults to retrieve the results from the data 
server. 

5. Call DBResultsToText to convert the data returned from the data
base into text strings. 

6. Call DBDisposeQuery to deallocate the data structures used in 
making the query. 

7. Call DBEnd to shut everything down. 

This is a lot simpler than the previous example, but it depends on sev
eral other large pieces of software: the software to access the network, the 
DAL server, and the database adapter to the vendor's DBMS. By building 
on top of a layered architecture, your job as an application developer is a 
lot easier, so long as all the layers you need are there. 

Figure 10-1 illustrates what you can do with the Data Access Manager. 
This example has three Macintosh applications: a spreadsheet, a report 
writer, and a word processor. Each of these applications can use any 
available communications link available on their Macintosh to connect 
with a host computer. Minicomputers, such as a DEC VAX, or main
frames, such as an IBM mainframe, are supported by the Data Access 
Manager. Several different DBMSs, each from a different vendor, are sup
ported on these machines. By use of the DAM, a user has access to infor
mation on a variety of databases using various communications channels, 
various hosts, and various DBMSs. This all happens through a single 
interface provided by the Data Access Manager. 

Asynchronous hne 

LocaiTalk or ElherTalk 

3270 synchronous line 

Token Talk 

Figure 1 0-1 . Various uses of the Data Access Manager 



148 IJl> Chapter 10 The Data Access Manager and the Data Access Language 

You can use DAL and the DAM with your application to ensure that 
users are always using the latest data. Because these tools can hide the 
details of navigating through a network to a host and navigating through 
a database to a set of data, nontechnical users can use large, complex 
databases knowing little of the details . 

..,. The Architecture of the Data Access Manager 
The Data Access Manager provides a generic application programming 
interface to databases and other data sets using the clientjserver model. 
In System 7, the Data Access Manager (DAM) will be used primarily in 
conjunction with the Data Access Language (DAL). It is important to real
ize, however, that these two are not the same. To understand this, you 
must look at the architecture of the Data Access Manager and at how it 
is used. 

Figure 10-2 illustrates the architecture of the Data Access Manager. In 
the Macintosh, three software components work together. An application 
calls the routines of the Data Access Manager to send a query to a host or 
data server. The query might be written in Data Access Language, but it 
could be expressed in any language. 

Macintosh Host 

~ ~ 
Application DBMS r- Database 

IC" -.:: 

. 
DAL DBMS Adapter 

Data Access Manager DAL Server 

DAL database extension 
DAL Communications 

Adapter 

. . 
Communications link 

Figure 10-2. The architecture of the Data Access Manager 



Note~ 

~ The Architecture of the Data Access Manager 149 

The Data Access Manager is told to use a particular database extension 
when making this query. A database extension is responsible for setting 
up a communications channel with a host (if one is required). System 7 
ships with one database extension for use with the Data Access Language. 
Then, by communicating over the channel with a peer process on the 
host, the data base extension sends the user's name and password and 
then the query. An extension for a local database may not require all this 
work, but the DAL extension does have to do it. 

Currently, all data servers are on minicomputers or mainframes. 
Future database extensions will support local databases on the user's 
Macintosh, as well as databases located on AppleTalk file servers. 

The DAL database extension works with a peer process on the data 
server. The peer process consists of four major components: 

• An operating-system adapter 
• A network adapter for the particular communications protocol in 

use 
• A DAL server that handles the generic aspects of query processing 
• A database adapter that translates the query from DAL into the 

proprietary query language needed by the DBMS managing the 
database to be queried 

The server process on the host communicates with a DBMS process and 
passes the user's query to it. The DBMS returns the results of the query to 
the server process, which translates the results from the proprietary for
mats of the DBMS into a generic format supported by DAL. Next, the 
server process sends these results back to the database extension, which, 
in tum, passes the results back to the DAM when the application requests 
the results. DAL generally can start returning results before the query has 
been completely processed by the DBMS on the host. 

Only a small amount of code is needed in the Macintosh to provide 
these services. The only Macintosh code involved besides your applica
tion is the Data Access Manager, which is part of the operating system, 
and any database extensions, such as the DAL extension provided as part 
of System 7. Some communications code is also needed on the Macin
tosh. On the other hand, the host machine requires a great deal of code. 
In addition to one or more database management systems, the DAL 
server code is a substantial application by itself. 



150 ..,. Chapter 10 The Data Access Manager and the Data Access Language 

An important aspect of this process is that the Data Access Manager 
and the database extension do not look at the user's name, password, or 
query. The server process in the host does, and so "errors in query" can be 
found only by that process or the DBMS. The software in the Macintosh 
does not do any error checking on the query . 

..,.. Queries and the Data Access Manager 

In this chapter, the term query means simply a set of one or more com
mands to a database. These commands might retrieve data from a data
base, or they might store data in a database. In other words, do not 
assume that a query always retrieves data; it might be performing some 
other task. 

Queries come in two forms: quenJ documents stored on disk, and queries 
built in memory in real time. In either case, a query is always tied to a 
particular database extension because different extensions may require 
additional or different data. 

Query documents, because they only contain a set of commands for a 
database, are application-independent. Any application that can use the 
DAL and DAM can make use of a query document. A user could use the 
same query document when running a spreadsheet or a word processor. 
The results returned will be the same in either case, no matter which 
application was used (unless the data in the database have changed in the 
meantime). Query documents provide a simple but powerful way for any 
application to retrieve data. 

Queries built in real time require more work than query documents, but 
they are much more flexible than query documents. Data-intensive appli
cations will build queries at runtime, whereas most applications will use 
query documents . 

..,.. What Do You Need to Run DAL? 

If you are developing, or running, an application that uses DAL, you'll 
need several different pieces of software. Firs t, you' ll need a host machine 
with a t least one DBMS installed. This machine must also have some 
communications hardware and software that can communicate with 
Macintosh computers. Finally, you' ll need the DAL server software for 
this machine and DBMS. Hardware, DBMS, and communications 
requirements for running the DAL server software are listed in Table 10-1. 

On the Macintosh, in addition to your application, you' ll need the 
appropriate communications software and hardware to communicate 
with the host machine. 



Note~ 

Jl> The Data Access Language 151 

Note that you must be running System 7 on this Macintosh. You 
can write applications that use DAL under System 6, but in this 
case you must license the DAL software from Apple to link into 
your application. 

Table l 0 -l . Requirements for running DAL on host machines 

Host Twe Supported Communications Supported DBMS 
DEC VAX 
(running VAX/VMS) 

AppleTalk for VMS (Apple), LanWORKS 
(DEC), asynchronous communications 
3270 data stream protocol 

Ingres, Informix, Oracle, 
Sybase, DEC rdb 

IBM mainframe 
(running VM/CMS) 
IBM mainframe 
(running MVS/TSO) 

3270 data stream protocol 

IBM SQL/DS 

DB2 

~ The Data Access Language 
The Data Access Language (DAL) was originally known as CL/1. This 
language and the precursor to the Data Access Manager were developed 
by Network Innovations-founded in 1984, acquired by Apple in 1988, 
and now a wholly-owned subsidiary of Apple. 

DAL provides a generic language for relational databases, although you 
can use most of the language to interact with other types of databases. 
The C language was used as the model for DAL. DAL includes features of 
SQL (Structured Query Language), which is a standard query language 
for interacting with relational database management systems. SQL origi
nated in work done by IBM on databases in the early 1970s. Since that 
time, the language has been widely adopted by virtually all vendors of 
rela tional DBMSs and has a lso become an ANSI standard. 

SQL is primarily a data manipulation language. As such, it provides 
facilities for interacting with a database, but does not provide capabilities 
for handling communications, program control, arithmetic and logic, and 
data output- SQL was never intended for those purposes. SQL state
ments are embedded in applications written with COBOL, C, Fortran, and 
other programming languages that provide those capabilities and more. 
SQL does not provide a standard way of handling errors or a standard set 
of error codes. DAL provides both. 

DAL is to database management systems as PostScript is to printers. 
PostScript provides a platform-independent way for any application to 
print documents of all kinds. Similarly, Data Access Language provides a 
platform-independent way for any application to interact with a database. 



152 ..,. Chapter 10 The Data Access Manager and the Data Access Language 

The language statements of DAL can be divided into three groups: data 
manipulation (this is the portion of the language that resembles SQL), 
program control, and output. Table 10-2 lists all the DAL statements. 

Table 10-2. The Data Access Language statements 

Categont _St_at_en_te_n_t ______ _ 
Data manipulation OPEN DBMS 

CLOSE DBMS 
USE DBMS 
OPEN DATABASE 
CLOSE DATABASE 
USE DATABASE 
OPEN TABLE 
CLOSE TABLE 
USE LOCATION 
SELECT 
FETCH 
DESELECT 
UPDATE 
DELETE 
INSERT 
LINK 
UNLINK 
COMMIT 
ROLLBACK 
DESCRIBE DBMS 
DESCRIBE OPEN DBMS 
DESCRIBE DATABASES 
DESCRIBE OPEN DATABASES 
DESCRIBE TABLES 
DESCRIBE LINKSETS 
DESCRIBE COLUMNS 
EXECUTE 

Program control DECLARE 
UNDECLARE 
SET 
IF 
SWITCH 
GOTO/LABEL 
WHJLE 
DO 
FOR 
FOR EACH 



..,.. The Data Access Language 153 

Table 10-2. The DAL statements (continued) 

CategonJ 

Output 

Statement 
BREAK 
CONTINUE 
PROCEDURE 
CALL 
RETURN 
PRINT 
PRINTROW 
PRINTALL 
PRINTF 
PRINTINFO 
PRINTCTL 
ERRORCTL 

DAL also provides the following elements common to most program
ming languages: 

• Compound statements-A sequence of DAL statements are 
grouped together and executed sequentially when bracketed with 
{ and } characters. 

• Comments-Anything between the /* characters and the * / char
acters is ignored by the DAL interpreter. Comments can be nested. 

• Procedures-The PROCEDURE and CALL statements provide this 
capability in the language. 

• Functions-DAL provides a considerable number of built-in func
tions, such as $len, $substr, $colname, $cols, and $rows. 

• Identifiers-Identifiers begin with a letter, are 31 characters or less 
in length, and are case-insensitive. Identifiers can contain letters, 
numbers, or underscores, but no space characters. 

• Variables-Each variable has a unique identifier. The three types 
of variables are system variables (maintained by the DAL inter
preter), external variables (declared outside a DAL procedure defi
nition), and local variables (declared inside a DAL procedure 
definition). 

• Data types-DAL provides a wide variety of data types. The data 
types shared with the Data Access Manager are listed in Table 
10-3. DAL also provides three additional types useful in writing 
DAL programs: CURSOR (identifying an active set of rows), 
OBJNAME (for storing DAL identifiers), and GENERIC (for storing 
any type of data). 



"" 

154 Ill> Chapter 10 The Data Access Manager and the Data Access Language 

• Literals-Literals for most of the data types listed in Table 10-3 
can be written in the obvious manner. 

• Expressions-Expressions use the operators listed in Table 10-4 to 
combine literals, variables, and other identifiers for calculations. 
You can use parentheses to alter operator precedence rules. The 
DAL interpreter also converts the data type of an expression to 
match the type of result, and it provides a full set of type conver
sion opera tors. 

Table 10-3. Supported data types in Data Access Language 

Data Ttte.e 
Length 
(bl{tes) Descrip_tion 

type Boolean 1 TRUE (1) or FALSE (0) 
typeSMlnt 2 Signed short integer 
typelnteger 4 Signed long integer 
typeSMFloa t 4 Signed small floating-point number 
type Float 8 Signed floating-point number 
type Date 4 2 bytes for year, 1 byte for month, 1 byte for 

day 
type Time 4 1 byte for hour, 1 byte for minutes, 1 byte for 

seconds, 1 byte for hundredths of a second 
typeTimeStamp 8 typeDate and typeTime 
type Char any Fixed-length string (defined by the data source) 
type Decimal any Packed decimal string 
typeMoney any Same as typeDecimal, but always has 2 decimal 

places 
typeVarChar any A variable-length string of characters (with a 

length) 
typeLongChar any An unbounded sequence of characters 
typeVarBin any A variable-length string of bytes (with a length ) 
typeLongBin any An unbounded sequence of bytes of binary 

data 

.,... Aspects of Using DAL 

DAL is based on a model of databases having three levels: the database 
management system (DBMS), the databases accessible from the DBMS, 
and the tables in a database. This enables DAL to support nonrelational 
DBMSs, with a lot of work going into the server software. 



.,. The Data Access Language 155 

Table 10-4. Data Access Language operators 

Operator T!fpe 
Arithmetic 

String concatenation 
Comparison 

Logical 

Operators 
+ (addition) 
- (subtraction and negation) 
/ (division) 
* (multiplication) 

+ 
= or == (equality) 
!= or <> (inequality) 
< (less than) 
<= (less than or equal to) 
> (greater than) 
>= (greater than or equal to) 
AND 
OR 
NOT 

Some of the DAL statements are of special note. Use the DESCRIBE 
verbs to find out which DBMS to use, what security requirements it has, 
and so on. If appropriate, you can present your user with a list of avail
able DBMSs, then with a list of databases accessible from that DBMS, and 
finally with a list of tables in that database. Note that the language has no 
provision for listing all the hosts-you'll have to write the code if you 
need that capability. 

The EXECUTE command passes the remainder of the statement 
directly to the DBMS and is not touched by the DAL interpreter. You can 
use this statement to issue commands that are not supported by DAL, 
such as unique or proprietary commands. 

Use the COMMIT and ROLLBACK statements to manage transac
tions-that is, a set of one or more commands that should be performed 
as a unit. By using these commands for more than just updates, you can 
improve the performance of yom application and the host DBMS. The 
rule to follow is to use the COMMIT command early and often. Also, 
close cursors as soon as you are done with them. 

The OPEN TABLE and CLOSE TABLE statements do not affect a rela
tional DBMS and are ignored by the DAL interpreter in such a case. They 
do, however, have a significant effect on the performance of nonrela
tional DBMSs. You should therefore use these statements whenever a 
query can be made against a nonrelational DBMS. 

By setting the $fetchmode system variable, your application can control 
the performance of the SELECT, FETCH, and FOR EACH statements. 



156 ..,.. Chapter 10 The Data Access Manager and the Data Access Language 

You can select from four levels. The levels are as follows, starting at the 
mode with the highest level of performance: 

• Read-only-Your application can read each item once in the for
ward direction only. That is, it cannot return to a previous item 
without executing the query again. In this mode, you cannot get 
the total number of rows before they are all available. 

• Update-Your application can read or update each item once in 
the forward direction only. That is, it cannot return to a previous 
item without executing the query again. In this mode, you cannot 
get the total number of rows before they are a ll available. 

• Scrolling-Your application can read or write each item and can 
proceed in either the forward or backward direction. In this mode, 
you cannot get the total number of rows before they are all 
available. 

• Extract- Your application can read or write each item and can pro
ceed in either the forward or backward direction. In this mode, 
you can get the total number of rows before they are all available. 

Error codes are translated by the DAL interpreter into the standard 
DAL set of error codes, which are compatible with the error codes used by 
IBM's DB2 relational DBMS. Because errors for all supported DBMSs are 
converted into a standard set, your application does not have to deal with 
or know anything about this aspect of DBMSs. 

DAL cannot hide certain details of each DBMS from your application. 
Several areas your application may have to deal with are null and missing 
data, the collating sequence of characters, support for international char
acter sets, aggregate operators, and GROUP BY rules. These areas are all 
characteristic of the low-level features of each DBMS and cannot be 
translated without a considerable amount of work. 

~ Security Considerations 

Both the Data Access Language and the Data Access Manager use the 
standard security measures of the host operating system or the database 
management systems running on the host. Several levels of security are 
involved in talking to a particular database from a particular DBMS on a 
particular host computer. 

Access to the host happens over a network, provided that the user has 
access to the network. The user must provide the host with a valid user 
name and password. If these are not valid, the connection fails and the 
Data Access Manager returns with an error. 



II> The Data Access Language 157 

The user must also provide the DBMS with a user name and password. 
Again, if these are not accepted by the DBMS, the connection fails and the 
Data Access Manager returns with an error. 

Finally, the user may also have to provide the particular database with 
a user name and password. As before, if these are not valid, the connec
tion fails and the Data Access Manager returns with an error. 

The current versions of the Data Access Manager and Data Access Lan
guage have one potential security problem: The user name and password 
provided by the user are not encrypted. You can monitor the communica
tions path between the user and the host computer and see the user name 
and password . 

..,. Examples of Data Access Language 

Here are several fragments of DAL to give you some flavor of how you 
can use the language. The first example opens a marketing database using 
a name and password, selects all the people who have an interest level 
greater than 4 and returns their addresses, and deletes all uninterested 
contacts and closes the database. 

open ingres database "mkting" as use r "snidley" password "bah"; 
select name, address, city, state, country, zipcode from 

contacts where interest_level > 4 group by zipcode; 
printal l; 
delete from contacts wh ere interest_level = 1; 
close database "mkting"; 

The next example opens the orders database and inserts a new record 
into the order _ main table. Then it inserts three rows into the order _detail 
table and closes the database. 

open db2 database "orders" as user "nell" password "good"; 
insert into order_main (name, account_no, order_no) values 

("Acme Company", "A1787", "11-98343"); 
insert into order_detail (order_no, prod_code, prod_qty) values 

("11-98343", "M5011", 13); 
insert into order_detail (o rder-no, prod_code, prod_qty) values 

("11-98343", "M5650", 37); 
insert into order_detail <order_no, prod_code, prod_qty) values 

(" 11-98343", "M0400", 37); 
close database "orders"; 

The next example asks for information about all the databases and their 
tables. This example assumes that the user has already connected with a 
host. 



158 ..,. Chapter 1 0 The Data Access Manager and the Data Access Language 

I* db will hold the names of all databases *I 
declare cursor db; 
declare boolean done = $false; 

I* Get all the names of databases *I 
describe ingres databases into dbs; 
printall; 

I* For each database *I 
while (not done) 

{ 

fetch db; 
if(sqlcode <0) 

{ 

done = $true; 
continue; 
} 

I* get info on all tables *I 
desc ribe tables of db; 
printall; 
} 

When using DAL with the Data Access Manager, you will often build 
up queries in real time. In other cases, the user will choose a prebuilt 
query stored in a query document. Refer to the section on using the DAM 
routines for more information on how to do this . 

.,.. When to Use DAL and When to Use a 
DBMS Directly 

The question of when to use DAL and when to use the DBMS directly 
does not have a simple answer. Some rough guidelines follow . 

Use DAL when the data you'll be accessing fall into one of the follow
ing categories: 

• Live on more than one database managed by a variety of vendor's 
DBMSs- Having to access more than one DBMS often qualifies 
here. 

• Live on a wide variety of hosts-Having more than one vendor's 
host usually qualifies here; for example, a DEC VAX and a Data 
General MV. One exception to this guideline: If the data you're 
after is in the same vendor's DBMS running on different hosts, 
you may have an easier time staying within that vendor's system. 



~ When to Use DAL and When to Use a DBMS Directly 159 

• May be known only at runtime- Although some DBMS vendors 
provide excellent tools for accessing their databases on an ad hoc 
basis, the third-party tools for doing ad hoc queries with DAL are 
hard to beat. 

• Easily specified or accessed by the variety of third-party tools that 
understand DAL-One clear advantage of DAL over proprietary 
database access tools is that numerous third-party tools can talk to 
your databases. You can often use these tools straight out of the 
box by specifying a query (and setting up the network access, 
installing the DAL server software on the host, and so on). 

Use a DBMS directly when the data you' ll be accessing fall into one of 
the following categories: 

• Live in one or more databases managed by a single vendor's 
DBMS-DBMS vendors usually provide tools to access databases 
managed by their DBMS on a variety of different types of host 
computers. For example, if all the databases you will be accessing 
are Oracle databases, then the tools provided by Ingres may be 
exactl):' what you need. 

• Live on a single vendor's host computer-Having more than one 
vendor's host usually qualifies here. One obvious exception here: 
If the data you're after is in the same vendor's DBMS running on 
different hosts, you may have an easier time staying within that 
vendor's system. 

• Are known at compile-time- The highest performance from data
base access tools is usually available using tools provided by that 
vendor. Transaction-based application systems should probably 
never go through DAL unless high performance is not a 
requirement. 

Remember that these are general guidelines. You can get good perfor
mance from DAL if you tune both your application and queries. You 
should also look at tuning the host system and the DBMS for optimal 
performance. 

The question of performance is never a simple one. You may need to do 
some initial prototyping and benchmarking around your application with 
DAL and proprietary tools to give you enough information about perfor
mance so you can make an informed selection. 



160 IJI. Chapter 10 The Data Access Manager and the Data Access Language 

...,.. The Future of the Data Access Language 
DAL is now part of the Macintosh operating system. More and more 
applications will support DAL. More and more DBMS vendors can be 
expected to support DAL. What will the evolution of DAL and the Data 
Access Manager bring? Some obvious changes to look for are as follows: 

• Improved performance 

• Support for more host computers 
• Support for more host database management systems, perhaps 

including hierarchical and network model DBMSs and flat-ffie 
management systems (such as DEC's RMS) in addition to other 
relational DBMSs 

• Support for more communications protocols 

These changes will not affect most applications that use DAL or the 
DAM; however, they will increase the range of these two tools to other 
platforms, so users of your application will potentially have more reasons 
for accessing databases through your application. 

Other changes that you can expect to see in the future include the 
following: 

• A porting kit for the DAL server, allowing anyone to port the 
server to another host or to support another DBMS 

• A software toolkit and documentation for developing database 
extensions on the Macintosh, allowing local Macintosh databases 
to be supported 

• Support for additional data types, such as blobs (large unstructured 
chunks of data which could be used for storing documents and 
pictures in databases) 

• More sophisticated support for stored procedures 

Some of these changes will require alterations in applications that use 
DAL and the DAM; other changes won' t require any alterations . 

...,.. Using the Data Access Manager 
The Data Access Manager (DAM) provides two sets of routines: a high
level set of a calls and a low-level set of calls. You can use the calls from 
one set or you can use calls from both sets, since the two sets are compati-



..,. Using the Data Access Manager 161 

ble. You'll look at how to use these two sets of calls after first looking at 
query documents. 

The high-level calls are designed for applications that are not data
intensive, such as word processors. These calls are quite easy to use, but 
offer little control or flexibility. High-level calls use query documents cre
ated using another application. Apple recommends that the high-level 
calls be used for retrieving data, but not for uploading data, because the 
high-level calls cannot verify that the uploaded data was received by 
the host. 

The low-level calls give you a great deal of control over the process of 
working with a DBMS, but the price you pay is that you will have to write 
more code than if you chose the high-level set of calls. You will also need 
to understand more about databases to use these routines most effectively 
and to get the best performance from the communications network, the 
host, and the DBMS. 

You can use the low-level calls and most of the high-level calls asyn
chronously. To make an asynchronous call, pass a pointer to an asynchro
nous parameter block record. You'll need to fill out some values in the 
record before passing it. Check the result field in the record to find out 
when the call has completed . 

.,.. Compatibility and the Data Access Manager 

Call Gestalt with a selector of gestaltDBAccessMgrAttr to inquire about 
the Data Access Manager. The only attribute returned from this call under 
System 7 tells you whether the Data Access Manager is present. 

.,.. Query Documents 

A query document is a document that contains a set of commands for use 
with the Data Access Manager. Each document is written for use with one 
or more database extensions. System 7 comes with one database exten
sion, written to handle queries written with the Data Access Language. 
Note that the term query in this context does not mean that it can only be 
used to retrieve data. Here, the term query refers to a set of one or more 
commands (and any associated data) that will be executed by a DAM 
server. Generally, a query document can be used by many, if not all, 
applications that support query documents. 

Query documents are files of type 'qery'. If your document can create or 
modify such documents, then you may want to create an icon for them. 
Each query document contains a set of resources: 



162 ..,. Chapter 10 The Data Access Manager and the Data Access Language 

• A 'qrsc' resource-Contains the resource IDs for all other resources 
in this file. 

• An 'STR#' resource-Contains the name of the database extension 
to be used \.Vith this document, and (optionally) the name of the 
host, the user name, password, and connection information. Some 
of the parameters may be null strings; in such a case, these strings 
will be constructed at runtime. 

• One or more 'wstr' resources-Contain strings of commands and 
data to be sent to the data server. 

• An optional 'qdef' resource and other associated resources-A 'qdef' 
resource contains code that will present a user with a dialog box 
prompting him or her for information used in making the query. 

The purpose of a 'qdef' resource is to build a query record in memory. A 
query record contains all the information related to a query. The DAM 
will construct a query record using information contained in the 'qrsc' and 
'STR#' resources. If a 'qdef' function exists, the DAM will call that function 
and pass the handle to the query record. That function can modify the 
query record. 

When writing a 'qdef' resource, avoid writing it in an application-specific 
manner. That is, if possible your query should be usable from any applica
tion that can use query documents. Your 'qdef' function will be passed a 
session ID if a session is already open; otherwise, your function can option
ally open a session. You will also be passed a handle to a query record, and 
you can modify the contents of this record. The 'qdef' must return an error 
code of noErr, or the query will not be sent to the data server. 

A query document can have more than one query. The user or the 'qdef' 
function will choose a query from the set and add it to the query record. 
The high-level calls to the Data Access Manager open the query docu
ment selected by the user. The 'qdef' function is called by the Data Access 
Manager to present the user with a dialog box. After the user has selected 
a query or entered data, the query is sent to the selected data server. 

Jll. Using the High-Level Calls to the Data Access Manager 

To initialize the Data Access Manager, call InitDBPack. You must make 
this call before using any other routine in this manager. It is safe to call this 
routine more than once; if the DAM is already running, no harm will resul t. 

To create a query record, call DBGetNewQuery, passing the resource ID 
of the 'qrsc' resource to be used. This routine uses the contents of the 'qrsc' 
resource to construct the query record. If a 'qdef' resource is present, then 



.,. Using the Data Access Manager 163 

this routine wiU call that code. The resource file containing that resource 
must remain open until the call to DBStartQuery has completed, because 
other resources from that file v.rill be used in creating the record. 

To dispose of a query record once you are finished with it, ca ll 
DBDisposeQuery. This routine frees all memory associated with the 
record as well. 

Call DBStartQuery to complete the query record, initia te a session 
with the host if required, send the query, and ask the data server to exe
cute the query. This routine performs its tasks by using several of the low
level routines. The parameters to pass this routine include a handle to a 
query record, a pointer to an optional asynchronous parameter block rec
ord, and a session ID. If the session ID is 0, then this routine will initiate a 
session with the host; otherwise, it will use the existing session. You can 
also provide the address of a status procedure. This routine will call your 
s tatus procedure as things progress, a llowing you to keep the user 
informed about the progress of the query. 

To retrieve the results of your query, call DBGetQueryResults. You'll 
pass several parameters, mostly the same as for DBStartQuery. The one 
additional parameter is the handle to a results record. When this call is 
completed, the results record will contain as much data as will fit into 
memory. If there is more data than will fit in memory, then you 'll have to 
make additional calls to DBGetQueryResults. You can also specify an 
optional timeout value for this call. This routine can also be used to 
retrieve the results of queries submitted with the low-level interface. 

The information in the results record is in a binary format. To convert 
this information to text strings, call DBResultsToText, which calls the 
appropriate result handlers to do this. This routine, and the result han
dlers, are discussed below . 

..,. Using the Low-Level Calls to the Data Access Manager 

To initialize the Data Access Manager, call InitDBPack. You must make 
this call before using any other routine in the DAM. It is safe to call this 
routine more than once; if the DAM is already running, no harm will 
result from this. 

To start a session with a data server, call DBinit. This routine returns a 
session ID, which is required to used most of the other low-level calls. 
You' ll need to pass this routine the name of the database extension to use 
('DAL' for the extension provided as part of System 7), host name, user 
name, password, and an optional string to be passed to the data server. 

To conclude a session, call DBEnd. This routine closes the communica
tions link between the local machine and the host. 



164 .,.. Chapter 10 The Data Access Manager and the Data Access Language 

To send a query (or a portion) to the data server, call DBSend. You can 
use this call to send a query in more than one piece, because the data 
server will append all the strings until you call DBExec. The parameters 
for this call are a session 10 and a pointer to the text to be sent to the data 
server. Since the DAM and the database extension pass this information 
without looking at it, the data server receives the text unaltered. 

To send data to the host as part of a query, call DBSendltem. The 
parameters for this call are a session ID, the data type, the length of the 
data, the data format, and a pointer to the data. 

After sending a query and data to a data server, execute the query by 
calling DBExec, passing it the session ID. Call DBState to check on the 
status of the query, again passing the session ID. If you get an error of 
rcDBError, then the data server has rejected the query. Call DBGetErr to 
get the error code(s) and error message(s) from the da ta server. The mean
ing of these codes and messages is specific to the data server. 

Call DBGetltem to retrieve data generated by the query from the data 
server following your call to DBExec. You can also use this call to retrieve 
the same data more than once or to retrieve the characteristics of the next 
item withou t having to retrieve the data. You should pass the session lD, a 
timeout value, a pointer to a data buffer, and the length of the buffer. You 
also specify the type of the data you expect. If the next item isn' t of that 
type, you' ll get an error of rcDBBadType. To accept the next item regard
less of the type, specify typeAnyType. You can skip an item by specifying 
a data type of type Discard. To get the characteristics of the next data item, 
pass a NIL buffer pointer. 

DBGetltem returns the data type of the item, the characteristics of the 
data, and the length of the da ta in addition to the data itself. This routine 
sets flags to tell you whether the data item is NULL or if it is the last in a 
row. The data returned are in a binary format; to convert to text, use the 
DBResultsToText routine (described in the fo llowing section). 

Call DBUnGetltem to reverse the effect in the data server of the last 
call to DBGetltem. This call does not change the local copy of the data. 
Also, you can use this call only to reverse the last call to DBGetltem; you 
cannot use it to reverse the effect of more than one call . 

.,.. Using Result Handlers 

The information returned in the results record is in a binary format. Call 
DBResultsToText to convert this information to text strings, passing a 
results record and a pointer to a buffer for the text. This routine ca lls the 
appropriate result handlers to accomplish this. There are two sets of result 
handlers: one set for the current application and a default system set of 
handlers. If a particular data type has no application resul t handler, then 



..,.. Using the Data Access Manager 165 

this routine calls the system result handler for that type. You can write 
your own handlers for one or more data types. 

System 7 provides a set of result handlers for all data types listed in 
Table. l0-3, with the exception of those reserved for future use. Apple also 
provides three additional handlers. One handler is called when no other 
result handler can be called to process the results. The other two handlers 
are called by DBResultsToText after each item. The handler for typeCol
Break is called after each item that does not end a row of data; the default 
handler inserts a tab character. The handler for typeRowBreak is called 
after each item that does end a row of data; the default handler for this 
case inserts a return character. These last two handlers are not used any
where else. 

Call DBinstallResultHandler to install a new result handler. The 
parameters for this call are the data type, a pointer to the result handler 
procedure, and a Boolean that controls whether the result handler should 
be used for this application only or for all applications. You would use this 
call to install your own handler. 

Call DBRemoveResultHandler to remove the current application 
result handler for the specified data type. You cannot use this routine to 
remove a system result h andler. 

Call DBGetResultHandler to get the address of either the current sys
tem or application result handler for the specified data type. This routine 
is useful for several purposes. You can use it to get the address of a partic
ular result handler for use with DBResultsToText. You should use this 
routine in conjunction with the DBinstallResultHandler routine before 
installing a new system result handler. When your application is finished, 
reinstall the previous system result handler using the address returned by 
the call to DBGetResultHandler. 

If you are using the low-level call DBGetltem to retrieve results, you 
will have to call the DBGetResultHandler result h andler directly. First, 
retrieve the address of the handler using the call. Then call the handler, 
passing the data retrieved with the DBGetltem call . 

.,.. Using the Low-Level Utility Calls 

To halt the execution of a query and reinitialize the data server, call 
DBBreak. You can also use this call to terminate the session. Pass the 
session ID and a Boolean specifying whether the session should be terrni
nated or the data server reinitialized. Call DBKill to kill any asynchro
nous call. The on ly parameter to this ca ll is the poin ter to an 
asynchronous parameter block record. 

To get information about the specified session, call DBGetConnlnfo. 
The information returned by this routine includes the following: 



166 Ill> Chapter 10 The Data Access Manager and the Data Access Language 

• The name of the host 

• The user name (but not the password) 

• The connection string 

• The name of the network used to connect to the host 

• The time the session was started 

• The database extension and its session number for this session 
• The status of the session 

Your application can use this call to find out about concurrent sessions 
on your local machine by specifying each database extension and a session 
number. Session numbers are unique for each extension, and the first ses
sion number is always 1. By incrementing the session number and check
ing for valid data, you can find out the status of all other DAM sessions. 

Call DBGetSessionNum to find out the session number of the session 
with the specified session 10. You could use this call to get your own 
session number. Each database extension creates its own session num
bers. If more than one extension is active, more than one session can have 
the same session number . 

.,.. Human Interface Guidelines and the Data 
Access Manager 

Your application should follow the guidelines recommended by Apple for 
using the Data Access Manager (see "Get Info" at the end of this Chapter). 
The process of sending a query, processing it, and returning the results can 
take a significant amount of time- as long as several minutes or more. 
Therefore, when your application calls the DAM, be sure to let the user 
maintain control. The user should be able to cancel a query in progress. 
This is important, since a query can take a long time to be processed. 

If your· application can run in the background when processing a query, 
use the Notification Manager to alert the user of any problems. Do this 
rather than blasting an alert on top of the current application (which may 
not be your application). The user can then bring your application to the 
foreground for more information. Specify the query by name (if possible) 
in dialog boxes and windows. 

If your application supports more than one simultaneous query, provide 
a list of all cmrent queries and their status for your user. This allows the 
user to easily understand and control what is happening to all queries. 

If your application supports query documents, then you should add a 
new command, "Get Data ... ," to the File menu. This command should 



~ Conclusion 167 

bring up the standard fi le dialog and allow the user to select a query 
document, which may provide a dialog box for the user to add informa
tion about the query. 

Apple recommends that your application allow users to limit the 
amount of disk space used for storing query results. Cancel the query if 
the amount of space will exceed the limit, if your application can check 
this in advance. Otherwise, you may want to alert the user when you 
reach the limit. Users may not know how much data will be retrieved by a 
query. Allowing users to limit the data s torage space gives them control 
over another aspect of query processing . 

..,. Conclusion 

Get Info ..,.. 

In this chapter, you've looked at the Data Access Manager and the Data 
Access Language. The Data Access Manager provides a generic interface 
to database management systems and other sources of data . Two sets of 
routines provide a high-level and a low-level interface. 

The Data Access Language provides a powerful generic language for 
accessing data. You can use this language to access data from a variety of 
proprietary relational database management systems running on mini
computers and mainframes. 

By using the DAM and the DAL, your application can provide users 
with access to the large amount of existing data. The high-level interface, 
coupled with query documents, provides this capability for little work on 
your part. Data-intensive applications will tend to use the low-level inter
face to provide more power and flexibility. 

For more information on the Data Access Manager, refer to the 
Data Access Manager chapter of Inside Macintosh, Volume VI. For 
more information on the Data Access Language, refer to Data 
Access Language Programmer's Reference and Data Access Language 
Developer's Guide, available from APDA. 

For more information on SQL, the standard query language for 
relational databases, refer to A Guide to the SQL Standard by C. J. 
Date (Addison-Wesley, 1988). If you're looking for more informa
tion on databases in general, you'll have to decide between two 
excellent textbooks: An Introduction to Database Systems by C. J. 
Date (two volumes, Addison-Wesley, 1990) and Principles of Data
base and Knowledge-Base Systems by Jeffrey Ullman (two volumes, 
Computer Science Press, 1988). 



11 ~ The Help Manager 

.,.. Introduction 

The Help Manager provides opera ting-system support for a consis ten t 
style of user-level help. The Help Manager, new with System 7, provides 
a type of help that answers the question " What is this object?" when the 
user is pointing at an object on the screen (such as a menu, icon, window 
title, and so on). This new set of services makes it very easy for a user to 
interactively explore applications. The Finder supports it, and your appli
cations should too. 

The Help Manager is quite visible to users; it appends a Help menu to 
the right of the menu bar. Figure 11-1 shows the s tandard Help menu as 
seen from the Finder. If the user turns Help on, then whenever the cursor 
is positioned over an object that has help messages defined, a help bal
loon is ctisplayed. The balloon is positioned so that it does not obscure the 
object it is describing. The help message can be either a text string, in 
which case the Help Manager tries to present it in an aesthetically pleas
ing rectangle, or a picture (PICT), which is ctisplayed directly. When the 
user moves the cursor outside of the object, the Help Manager removes 
the help balloon. The services of the Help Manager are modeless so Help 
is available all the time. The mouse events are not changed; for example, 
whenever the user holds the mouse button down, the mouse generates a 
mouse-down event, as always. Help is accessible even from modal ctialog 
boxes. Figure 11 -2 shows a typical Balloon Help message from the Finder. 

169 



170 ..,.. Chapter 11 The Help Manager 

Note,.,. 

Show Balloons 

Finder Shortcuts 

Figure 11 -1 . The Help menu 

System Folder 
17 items 16.8MB in disk 21.3MB available 

ffiFll 
~ .~ D ~ 

..__ _ __.,..:..,_o __ ___.,u..:.,_...__,___,"'-te Pad File Sna pbook File 

This fill', along \'lith thl' Findl'r , 
contains: information your 
Macintosh nl'l'ds to opl'ratl' . To 
insta 11 or rl'movl' fonts , sounds, 
and kl'yboar d layouts, drag thl'm 
into or out of thl' Systl'm fill' . 

Figure 11 -2. A Balloon Help message 

~ 
1tup Items 

LJ 
Spool F oldel 

The goal of this initial version of the Help Manager is primarily to aid 
novice users, although more experienced users will also use it occasion
ally, such as when they're learning an unfamiliar application. The Finder 
in System 7 uses the Help Manager and provides good examples of how 
to write help messages. 

Other types of help will be provided in future versions of the 
Macintosh operating system; otherwise, Apple would not have 
added an entire menu to the menu bar for a single function. 



..,. Amount of Help versus Amount of Work 171 

In this chapter, you will look at the facilities of the Help Manager and 
what is required to add support for this help facility in existing and new 
applications. You will examine the resources the Help Manager uses as 
the source of help messages. Last, you' ll look at an example of adding 
help to a particular menu . 

..,. Amount of Help versus Amount of Work 
System 7 provides a minimal amount of help with no work at all from 
application developers. If you do nothing at all to support the Help Man
ager, your users will still find some help available. Standard help mes
sages are provided for the following items: 

• Standard window parts (such as the scroll bars and the grow box) 

• System dialog boxes (such as the standard file dialog boxes) 
• The Apple and Help menus 

Help messages are provided for system-supplied control panels. The 
Finder has help messages for the following: 

• All of its menus 
• Standard system icons (such as disks and the Trash can) 

If you're willing to add resources that provide the help messages to 
your application, then with no changes to your source code, you can pro
vide help messages for all or almost all of the features of your application. 
This will enable you to provide help for menu titles, menu items, items in 
dialog boxes and alerts, and standard window regions. You' ll need to 
write code only if you use a custom menu definition procedure (MDEF) or 
if you put objects in your windows that users can move around. 

For the most part, the help balloon is positioned automatically by the 
Help Manager. You can specify the position, but the Help Manager will 
override this if necessary-for example, if the specified position would 
put the help balloon partially off the screen. The Help Manager uses a 
WDEF (ID 126) provided as part of the system to draw the help balloon 
and balloon tip. 

The process of writing help messages is considerably simplified if you 
use Balloon Writer. This utility, which was shipped with every beta ver
sion of System 7, allows you to write help messages for standard interface 
elements, such as menus, windows, and dialog boxes. You can also use it 



172 .,. Chapter 11 The Help Manager 

to create custom balloons, that is, help messages which can only be 
shown using explicit calls to Help Manager routines . 

.,... Compatibility Considerations 
If you've added code to support the Help Manager, you' ll have to check 
whether it's running, since the Help Manager didn't exist before System 
7. To check whether it is available, use the Gestalt system call with the 
gestaltHelpMgrPresent selector. 

If you've only added help resources to your application, then you don' t 
need to check. Earlier versions of the operating system aren' t going to 
know what those resources are anyway so they will be ignored. 

Apple recommends that the Help Manager be used to complement 
existing help systems. If your application supports its own help system, 
then move any application-specific help menus and menu items to the 
standard Help menu. Users will come to expect that all help features will 
be accessible there. 

Call the HMGetHelpMenuHandle routine to get a copy of the handle 
to the Help menu. Once you have this handle, use the AppendMenu 
system call to add your help menu items to this menu. The Help Manager 
will automatically add a dashed line before any items which you have 
appended to this menu . 

.,... Internationalization Considerations 
The help messages in your application will have to be translated if the 
application is to be used in another language. This includes help messages 
in PICTs as well as in strings, so your translator will need an application 
to read and modify the PICT -based help messages. Multilingual applica
tions (applications that can be used in more than one language) are not 
supported directly by the Help Manager, so each version of an application 
can support only one language in its help messages at a time. You can 
write code that calls Help Manager routines to provide multilingual help . 

.,... Hot Rectangles! 
The Help Manager defines the concept of a hot rectangle. When the cursor 
is positioned over a hot rectangle, then the Help Manager displays the 
help message defined for it. Notice that it is not a hot region-calculations 
on regions take more time than calcu lations on rectangles. If the user 
moves the mouse more than 5 pixels between the time the cursor entered 



""' Help, the State, and Help Messages 173 

the hot rectangle and when the Help Manager has calculated that the 
cursor is over a hot rectangle, the help message is not displayed because 
the user might be simply moving the mouse somewhere other than the 
current object. 

Some hot rectangles are defined implicitly. Menus that use the system 
menu definition procedures and items in alerts and dialog boxes are 
examples of such. Other hot rectangles must be explicitly defined. The hot 
rectangles for the contents of a window, such as the items on a tool pal 
ette, are an example of this . 

..,... Help, the State, and Help Messages 
Menus, menu items, and many items in dialog boxes can have up to four 
states: 

• enabled 
• disabled 
• checked-and-enabled 
• marked-and-enabled 

If an item is marked-and-enabled, then it is enabled and is marked by 
something other than a check mark or an icon. Some applications, such as 
Microsoft PowerPoint, use a check mark to show the fon t of the current 
selection and a diamond to indicate the default font, if there is no current 
selection . The Help Manager supports different messages for each of 
these four states. This provides a more flexible and useful help facility 
than if the s tate of objects were no t considered. 

Help messages can be defined in several different ways: 

• 'STR ' resource 

• 'STR#' resource 

• Pascal string resource 
• 'TEXT' and 'sty!' resource 
• 'PICT' resource 

Each set of messages (one message per each of the four states) can use any 
one of these forms, but all messages in a particular set must use the same 
form. 

The particular form you choose for your help messages depends on 
the form of the message and on your programming style. If your help 



174 IJi> Chapter 11 The Help Manager 

message requires a pictme, then you should use a PICT for the help mes
sage. If you want text strings, then you can use one of the other forma ts, 
depending on your preferences. 

IJJI> Help Resources 
The Help Manager chapter of .Inside Macintosh, Volume VI defines four 
basic help resources: 'hmnu', 'hdlg', 'hrct', and 'hwin'. We'll look at these 
four resources and then look at two additional help resources, 'hovr' and 
'hfdr'. 

Each help resomce begins with a header. You can set any of the follow
ing flags in the header of a help resource: 

• hmUseSubiD-use subrange lOs-Set this flag on when the help 
resource belongs to a desk accessory or some other type of driver 
that has its own resources. 

• hmAbsoluteCoords-Use absolute coordinates in the window-Set 
this flag if you want the Help Manager to treat the upper left cor
ner of the window as coordinate 0,0 (such as when the port rec
tangle isn' t the same as the window origin). 

• hrnSaveBitsNoWindow- Save bits, no update event-Set this flag 
if you want the Help Manager to save the bits behind the help 
balloon and restore them without generating an update event. 

• hmSaveBitsWindow- Save bits, update event- Set this flag if you 
want the Help Manager to save the bits behind the help balloon, 
restore them, and then generate an update event. If you use the 
default, where you set neither the hmSaveBitsNoWindow flag nor 
the hmSaveBitsWindow flag, the Help Manager will not save the 
bits behind the balloon, but it does generate an update event 
when the balloon is removed. 

• hwinMatchtnTitle-Set this flag if you want the Help Manager to 
match a window with a 'hwin' resom ce if the string in the 'hwin' 
resource is contained somewhere in the window title. The default 
is that the string in the 'hwin' resource must match the initial char
acters of the window title. 

The default option is that none of these flags is set. 



..,. Help Resources 175 

~ The 'hmnu' Resource 

The 'hmnu' resource provides the content of help messages for standard 
menus. It consists of four sections: a header, a set of messages for missing 
items, a set of messages for the menu title, and an array of message sets, 
one per menu item. The structure of the 'hmnu' resource is shown in Fig
ure 11-3. The different kinds of entries for menu items are shown in the 
lower hali of the illustration. Notice that there is an entry type for menu 
items that should be ignored with respect to help, such as the dotted lines 
separating menu commands. You can also choose to specify the help mes
sage by providing a named resource rather than specifying the messages 
directly in the 'hmnu' resource. Specifying a set of help messages for menu 
items that match a string is useful if the menu item can change, but still 
follows a pattern. 

Header 

Each entry typically has a 
message for each of the four 
states: 

Size of entry (bytes) 

Message type 

Message for enabled state 

Message for disabled stale 
Message for missing stale 
Message tor other state 

Entry for 
missing & NIL 

messages 

'hmnu' 
resource 

Entry for 
menu title 

If the message type a 

HMSkipltem, the entry 
is simply: 

Size of entry (bytes) 

HMSkipltem 

If the message type = 
HMNamedResourceltem, 
the entry contains the 
resource type to fetch of 
that item name 

Size of entry (bytes) 

HMNamedResourceltem 

Resource type to fetch 

Figure 11 -3. The structure of the 'hmnu' resource 

Array of 
entries for 

menu items 

If the message type a 

HMCompareltem. the 
entry looks like: 

Size of entry (bytes) 

HMCompareltem 
String to match 

Message type 
Message for enabled state 
Message for disabled state 
Message for missing state 

Message for other state 



176 ..,. Chapter 11 The Help Manager 

The header contains the version of the Help Manager that this resource 
was developed for, a set of options, the resource lD of the WDEF (Balloon 
definition function), which will display the help ba lloons, the preferred 
position of the help balloons, and a count of the number of en tries in the 
rest of this resource. 

The second section contains the set of messages that will be used for 
any missing items defined later in this resource- one message for each of 
the four s tates. If a help message in one of the later sections is defined as 1111 

(the NIL string), then the Help Manager will use the corresponding mes
sage in this section in its place. Thus, a message common to many menu 
items can be defined here and not many times, reducing the amount of 
space required for the help messages. You can also use this set of mes
sages for missing messages-tha t is, for items beyond the last menu item 
for which help messages are provided in this resource. 

The third section contains three help messages for the menu title: for 
the enabled state, the disabled sta te, and when the menu is disabled by a 
modal dialog box, and a help message for all menu items to be used when 
they are disabled by a modal dia log box. 

The fourth section contains messages for each menu item in the menu, 
one set of four messages for each menu item. The sets of messages are 
mapped to menu items one by one, starting from the top of the menu. The 
first set of messages in this section is for the first menu item, the second 
set of messages is for the second item, and so on. A definition is provided 
the resource description for skipping a menu item. You'd use this, for 
example, if a menu has dashed lines . 

..,. The 'hdlg' Resource 

You can use the 'hdlg' resource to hold the help messages for a dialog box, 
alert, or window. The 'hdlg' resomce is structured similarly to the 'hmnu' 
resource, although it has only three sections: a header, a set of messages 
for missing andjor NIL messages, and an array of message sets. The 
structure of the 'hdlg' resource is shown in Figure 11-4. 

The header conta ins the same items as the header for the 'hmnu' 
resomce, plus one additional item: an offset to 'DITL' items. Remember
a 'DlTL' resource contains a list of items for a particular dialog. This offset 
makes it easier for you to provide help when you append one 'DITL' to the 
end of another 'DlTL'. 

The second section, the set of messages for missing items, is used in the 
same fashion as in the 'hmnu' resource. 

The third and final section contajns a series of messages illustrated in 
the lower portion of Figure 11-4. Each set of four messages corresponds to 
an item in a 'DITL'. These are paired one for one; that is, the first set of 



.,.. Help Resources 177 

'hdlg' 

I resource 

I 

------------- ---------Help Mgr version number 

+I c Offset in DITL list + Options {reserved) 

Total no. of entries 

Entry for Array of 
Header missing & NIL entries for 

Each entry has a message for 
each of the four states, an 
(optional) point for the lip of the 
help balloon and an (optional) 
location for the hoi rectangle: 

messages OITLitems 

Size of entry (bytes) 

Message type 

Point for balloon tip (optional) 
Hot rect (optional) 

Message for enabled state 
Message for disabled state 

Message for missing state 
Message for other state 

Figure 11-4. The structure of the 'hdlg' resource 

messages applies to the first entry in the 'DITL'. The fi rst entry in the 
'DITL' is actually the nth entry, where n equals the offset specified in the 
header of this 'hdlg' resource. If you aren ' t satisfied with the default hot 
rectangle and point, you can specify an optional hot rectangle and point 
for the balloon tip for each set of messages . 

.,.. The 'hrct' Resource 

The 'hrct' resource is used to specify the hot rectangle and a single help 
message for a set of objects in a window. Because these resources provide 
only a single message, unlike a 'hdJg' resource, it does not deal wHh the 
state of an object. These resources also have no provisions for NIL or miss
ing messages. The structure of the 'hrct' resource is shown in Figure 11 -5 . 

The 'h rct' resource is structured similarly to the 'hmnu' resource, although 
it has only two sections: a header and an array of entries. The header con
tains the same items as the header for the 'hmnu' resource: the version of 
the Help Manager for which this resource was developed, an area fo r 
options, and a count of the number of entries in the rest of this resource. 

The second section is an array of entries, one entry per object. Each 
entry contains a help string, a hot rectangle, and a point for the balloon 



178 ..,. Chapter 11 The Help Manager 

Help Mor version number 
Options (reserved) 
Total no. of entries 

Header 

'hrct' 
resource 

+ 

Each entry has the following fields: Size of entry (bytes) 

Message type 

Point for balloon tip 

Hot rect 

Help message 

Array of 
entries for 

menu items 

or: 

Size of entry (bytes) 

Message type = HMSkipltem 

Figure 11-5. The structure of the 'hrct' resource 

tip. You must specify the hot rectangle and the point, because the Help 
Manager has no other source for this information-there are no default 
values as in menus and items in dialogs. There is also an entry to tell the 
Help Manager that you don' t wish help to be provided for a particular 
window object. 

..,. The 'hwin' Resource 

The Help Manager uses the 'hwin' resource to map from window titles to 
the particular help resource ('hdlg' or 'hrct' ) to use for that window. At 
most one 'h win' resource is needed in a application's resource fork. The 
structure of the 'hwin' resource is shown in Figure 11-6. 

The 'hwin' resouTce is structuTed in two sections: a header and an anay 
of information for each set of windows. The header contains the version of 
the Help Manager that this resource was developed for and an area for 
options. 

The second section is an array of entries, each containing the following: 

• A resource ID 
• A resource type ('hdlg' or 'hrct' ) 



Header 

'hwin' 
resource 

+ 

Each entry has the following fields: 

..,. Help Resources 179 

Array of entries 

Resource id of help template 
Resource type of help template 
Comparison length 
Window title to compare with 

Figure 11-6. The structure of the 'hwin' resource 

• A string to compare window titles against 
• A comparison length (a match between a window title and the 

comparison string must be made with a t least this many charac
ters) 

Add one entry to your application 's 'hwin' resource for each window (or 
set of windows) for which you are providing help . 

..,.. The 'hfdr' Resource 

The Finder has a default help message to display wh en the cursor is over 
the icon of an application . You can specify your own help message when 
the cursor is positioned over the icon of your application. The help mes
sage shou ld be in an 'hfdr' resource of ID -5696. 

Note that there is no way to override the Finder's default help message 
for document icons . 

..,.. The 'hovr' Resource 

You can override the default messages for standard interface elements for 
your application using an 'hovr' resource. In this resource, you can specify 
a help message for the following elements: 



180 ..,. Chapter 11 The Help Manager 

• Title bar of the active window 

• Grow box of the active window 

• Close box of the active window 
• Zoom region of the active window 

• Inactive window of the active application 
• (Inactive) window of an inactive application 
• Area outside a modal dialog box 

Apple recommends that you not use this resource unless you have a 
strong need to override the default messages . 

..,.. Creating Help Resources for Standard Menus 
The 'hmnu' resource just described is used to provide help messages for 
any standard menu, including menu titles, pull-down menus, hierarchical 
menus, and pop-up menus. 

For each item in a menu, you can write up to four messages, one mes
sage for each of the four states: enabled, disabled, checked-and-enabled, 
or marked-and-enabled. You can provide all four messages for an item, or 
none. Don' t forget that you must have an entry in this resource for dashed 
lines in the menu as well. A special value tells the Help Manager to skip 
over this object. By taking advantage of the missing and NIL message 
feature, you can reduce the size of the 'hmnu' resource and make it a little 
easier to maintain. 

The resource ID of the 'hmnu' resource should be the same ID as the 
menu for which it is providing help. When the user has the cursor over a 
menu, the MenuSelect call returns the menu's resource 10. If help is 
enabled, the Help Manager tries to locate an 'hmnu' resource with the 
same resource 10. If such a resource exists, and there is a help message to 
display, the Help Manager puts it on the screen. 

If the menu can change, the resources get a li ttle more complicated. If 
the items are simply added to the end of the menu, you can append their 
help messages to the end of this section. If the resources are added in 
other places in the menu, then you can use one of two methods to provide 
help messages. Use the HMCompareltem statement in the resource if 
you want to match a string for the item, or use the HMNamedResource 
statement to provide resources for the item. If you use the latter, you can 
provide one or more of the four messages for the item. If you provide 
more than one, you must define them separately. 



..,. Creating Help Resources for Modeless Dialogs and Windows 181 

..,. Creating Help Resources for Modal Dialogs 

Under System 7, when a modal dialog box is displayed, the Edit and Help 
menus are still active. Help can therefore be provided even for modal 
dialogs. 

If the dialog does not have a title, use an 'hdlg' resource to provide its 
help messages. If the dialog does have a title, then you have a choice in 
how to provide help. The firs t choice is to use an 'hdlg' resource as in the 
previous case. The other choice is to use an 'hwin' resource to connect the 
window title to the help resource, and either an 'hrct' resource or an 'hdlg' 
resource to provide the help messages. 

You can also specify an 'hwin' resource for a modal or modeless dialog. 
The Help Manager will use this resource when the cursor is placed over 
any point in the dialog that does not have an 'hrct' or 'hdlg' resource asso
ciated with it. Using an 'hwin' resource in conjunction with other help 
resources means tha t you can provide help information for the entire dia
log, whether it has dialog items or not. 

If you use an 'hrct' resource, you can provide only a single help message 
per item in the dialog. By using an 'hdlg' resource, you can provide up to 
four messages for each dialog. If you do use an 'hdlg' resource, you'll a lso 
have to add a helpltem entry in the dialog's 'DITL'. This item contains the 
resource type for help ('hdlg' or 'hrct' ) and the resource ID. 

Whichever of the two resources you use, the first en try in the last sec
tion of each resource provides the help message(s) for the first item in the 
'DITL', the second item provides the help for the second item in the 'DITL', 
and so on. 

One advantage of using the 'hdlg' resource is tha t if you append 
another 'DITL' to the dialog's 'DITL', you can provide the help resources 
for these additional items by creating an other 'hdlg' resource for these 
additional resources. The second 'hdlg' resource uses the offset in the 
resource's header to specify where the help messages belong in the dialog 
box after they are appended. The second 'DITL' must a lso have a helpltem 
entry . 

..,. Creating Help Resources for Modeless 
Dialogs and Windows 

To create help resources for modeless dialogs and window contents (the 
system handles help for standard window parts), you need to add an 
en try to your application's 'hwin' resource for each window and modeless 



182 ..,. Chapter 11 The Help Manager 

dialog. In this section, the term window means both window and mode
less dialog. 

To provide the help content for a window, you have the choice of using 
either an 'hrct' resource or an 'hdlg' resource to provide the help messages. 
The tradeoff between using these two resources is explained in the previ
ous section. 

In order to use an 'hwin' resource, your window must have a title. Note 
that you can give a window a title of nonprintable characters. In such a 
case the window's title will not be displayed, but you can use an 'hwin' 
resource to provide help for it. 

...,. Creating Help Resources for Custom Menus 
If your application uses MDEF (custom menu definition) procedures to 
provide more complex or graphic menus, then you' ll have to modify the 
MDEF procedure in addition to providing the help resource of your 
choice. Fortunately, not much work is required to do this. The help mes
sages for custom menus should be provided in an 'hmnu' resource just like 
any other menu. 

An MDEF procedure responds to messages passed to it by the Menu 
Manager, such as mDrawMsg, mChooseMsg, and mSizeMsg. The change 
to the MDEF you must make is in handling the mChooseMsg. If help is 
enabled by the user, then after you draw the highlighted menu item, you 
need to call HMShowMenuBalloon. This causes the Help Manager to 
display the appropriate help message for this menu item. 

Before displaying a help balloon, check that the user has enabled Bal
loon Help by calling the HMGetBalloons routine. This system call 
returns TRUE if the user has enabled Balloon Help. Your application can 
also enable or disable Balloon Help by means of the HMSetBalloons sys
tem call (although there are very few situations in which you might need 
to do this). 

When the menu item is unhighlighted, you need to call HMRemove
Balloon, which causes the Help Manager to remove the help balloon dis
played for this item. 

If you want to do some additional work, you can specify a WDEF (win
dow definition) procedure, which will be called by the Help Manager to 
display a custom balloon shape. You can also write custom functions that 
calculate the position of the balloon tip and the dimensions of the help 
balloon. 



.,.. Using the Help Manager Routines 183 

..,.. Creating Help Resources for Movable 
Window Objects 
Providing help for movable window objects is the most complex case
you'll actually have to write some code to do this. This code needs to be 
written to run at idle time. Basically, the code h as to check whether the 
cursor is over a hot rectangle. This is not so easy, because the objects 
you' re dealing with can move around. If the cursor is over a hot rectangle, 
and help is enabled, then you need to call HMShowBalloon. Don' t call 
HMShowBalloon if this rectangle is the same as the last hot rectangle, or 
your help messages will flash on the screen. As with the HMShowMenu
Balloon call, you can optionally specify a WDEF procedure that will dis
play a custom help balloon and create functions to calculate the position 
of the balloon tip and the dimensions of the help balloon. 

You should call HMRemoveBalloon when the cursor is inside your 
frontmost window, but not in a hot rectangle. If your windows are resiz
able, the window contents can change (such as a scrollable palette of 
tools), or hot rectangles in the content region can change position, then 
you will need to use the HMSShowBalloon system call if you want to 
provide help . 

..,.. Using the Help Manager Routines 
In addition to the routines discussed earlier in this chapter, the Help Man
ager provides several other routines that are useful to application pro
grammers. Let's briefly review them. 

Call HMisBalloon to check whether a help balloon is currently being 
displayed on the screen. This routine returns TRUE or FALSE. 

Call HMGetFront and HMGetFontSize to get the current font and font 
size, respectively, used to display help messages in your application. You 
can change these values by using the HMSetFont and HMSetFontSize 
system calls. Note that these calls are associated only \ovith help messages 
specified by 'STR ', 'STR#', and Pascal string resources. They have no 
effect on messages specified by 'PICT' or 'TEXT' and 'styl' resources. 

Call HMSetDialogResiD to change the 'hdlg' resource ID for the next 
dialog box to be displayed. To find out the 'hd lg' resource ID of the next 
dialog box to be displayed, call HMGetDialogResiD. This routine returns 
-1 if the 'hdlg' resource ID was not set by means of the HMSetDialog
ResiD call, or an 'hdlg' resource ID if that routine was used. 

Similarly, call HMSetMenuResiD to change the 'hnmu' resource ID for 
a menu. You can use this call to override an existing 'hmnu' resource or to 



184 Ill- Chapter 11 The Help Manager 

set the IO for a menu for which no 'hrnnu' was specified. To find out the 
'hmnu' resource ID of the next clialog box to be displayed, call HMGet
MenuResiD. This routine returns - 1 if the 'hmnu' resource IO was not 
set by means of the HMSetMenuResiD call, or an 'hmnu' resource ID if 
that routine was used. 

To search an open resource file for an 'hdlg' or 'hrct' resource and apply 
it to the frontmost window, call HMScanTemplateltems. Specify the 
resource type, resource IO, and which resource file should be searched . 

..,_ Example: Creating an 1hmnul Resource 
Let's now look at how to create a help resource for a particular menu-the 
Mark menu of MPW (Macintosh Programmer's Workshop), as shown in 
Figure 11-7. The version of the menu shown on the left of Figure 11-7 has 
no marks in the current window. The menu on the right has two marks in 
the current window. Marking a selection is like placing a bookmark in a 
book-it names a particular location in a file. Typical objects that are 
marked in MPW are function and procedure headers. The Mark menu lists 
all the marks in the active window below the two commands in the Mark 
menu. Selecting one of these marks scrolls that selection into view. 

~M 

Unmark'" 

Figure 11 -7. MPW's Mark menu 

Marl< ... ~M 
Unmark ... 

getoptions 
main 

To construct a help resource for this menu, you have to construct an 
'hmnu' resource, as shown in Figure 11-8. The resource 10 for this 
resource is 133, because that is the resource 10 of the 'MENU' resource for 
the Mark menu. 

The header shows that there are five entries in the 'hmnu' structure. The 
first entry, for missing and NIL entries, holds the help messages for the 
marks made in a window by the user. Since you don't know how many 



Header 

r.M~e-s-sa~g-e~ty-pe--~ ~H~M~St~ri-ng~ll-em' 

Message for enabled state 

Message for disabled state 

Message for missing s tate 
Message for other state 

First entry - lor missing 
and NIL messages 

..,. Writing Help Messages 185 

'hmnu' resource 
id 133 

+ 

Entry lor Entry for 
missing & NIL menu tille 

Array ol 
entries for 

menu 

/ ··=·~~ /items 

Message type = HMStringllem 

Message for enabled state 
Message for disabled state 

Message for missing state 
Message for other state 

Second entry -for 
menu tille 

Message type Q HMStringltem 

Message for enabled state 

I Message for disabled state 

I Message for missing slate 

I Message for other state 

Message type • HMStringltem 

Message for enabled s tate 
Message for d isabled stale 

Message for missing state 

Message tor other s tate 

I Message type a HMSkipllem 

Third entry · tor 
'Mark' menu item 

Fourth entry · for 
'Unmark' menu 
item 

Filth entry - for 
dashed line 

Figure ll-8. The structure of an 'hmnu' resource for the Mark menu 

marks the user might create, use th e missing message facility in this 
resource. 

Th e second entry holds the help messages for the menu title. 
The remainder of the entries are for the menu items in the Mark menu. 

The third and fourth entries are for the Mark and Unmark menu items. 
The fifth and last entry is for the dashed line that separates the commands 
in the menu from the names of the marks. The Help Manager will not use 
this entry when there are no marks, because this item is added to the 
menu after the user has created one or more marks in the curren t 
window . 

.,... Writing Help Messages 
Apple has disseminated a set of rules for writing help messages. These 
rules have been tested by Apple against real users, and by following 
them, your users will get more from using the h elp facility than they 
might otherwise. 



186 .,.. Chapter 11 The Help Manager 

The rules for writing help messages, briefly stated, are as follows. 

• Be complete and concise-long help messages may confuse users. 
Don' t repeat the obvious. 

• Your help messages should answer questions such as "What is 
this?" or "What does this do?" or " What happens when I click 
here?" 

• For a set of related objects, such as a set of radio buttons, provide 
a help message for the set. You don't need to provide a message 
for each object in the set. 

• Name objects that the user will have to learn. 

• State the goal first, and use the active voice. 
• Don' t use jargon; use nontechnical terms and standard phrases. 

• Maintain a consistent syntax. Most of the system-related h elp mes
sages are in the form of "X is a ... ," "goal + action," and " item 
name + verb." 

~ Conc lusion 

Get Info IIJ> 

In this ch apter, you've looked at the new Help Manager. The Help Man
ager in System 7 answers the question " What is this thing?" when the 
user moves the mouse over an object on the screen. For the most part, you 
can provide this kind of help by adding some new resources to your 
application. However, in a couple of cases you'll have to add code to 
support the Help Manager. 

For more information on the Help Manager, refer to the Help 
Manager chapter of Inside Macintosh, Volume VI. 

When writing help messages, you may want to refer to an 
APDA publication, Apple Publications Style Guide, which lists much 
of the standard Macintosh terminology. 



12 ~ The Sound Manager 

~ Introduction 
The Sound Manager provides several methods for creating and playing 
sounds on the Macintosh. The latest version of the Sound Manager adds 
several new capabilities, which you'll examine in this chapter. You should 
understand something about the Sound Manager if you use any sounds in 
your application, including the SysBeep call. 

The Sound Manager in System 7 brings several new sound capabilities: 

• Plays sounds continuously from disk while your application and 
other applications are running 

• Plays multiple channels of sampled sound at a time and has them 
mixed in real time 

• Monitors the CPU load that one or all sound channels are using 

• Monitors the status of sound channels 

• Records sounds 

If your application does not deal primarily with sound or music, then 
you will not need to understand the Sound Manager in detail. You can 
play short and long sounds by using a couple of system calls. If your 
application is a music application, then you'll have to understand every
thing about the Sound Manager. 

In this chapter, you' ll first look at the three different ways of produc
ing sounds on the Macintosh and the data structures used by the Sound 

187 



188 ~ Chapter 12 The Sound Manager 

Manager to do this. Following that, you' ll go through the high-level 
calls to the Sound Manager. Then you' ll look at architecture of the 
Sound Manager and the sound commands used to create and manage 
sounds . You' ll then look at the low-level interface to the Sound Man
ager. Last, you ' ll look at how to record sounds on the Macintosh, first 
using the high-level interface and then the low-level interface . 

...,_ Different Ways to Produce Sounds 
The Sound Manager supports three different methods of creating sound. 
The simplest method synthesizes notes, one at a time. You sp ecify a note 
by describing its frequency, volume, and dura tion. This method of creat
ing sound can be used only to create simple melodies and perhaps some 
sound effects. It is not suitable for producing speech. 

The second method requires that you specify up to four wave tables. A 
wave table describes a single wave of sound as a series of numbers. When 
the Sound Manager plays a sound described in a wave table, it sends the 
numbers in the wave table out one at a time to a digital-to-analog con
verter. When the last number has been sent out, the Sound Manager 
re turns to the beginning of the wave table and begins all over again. This 
method produces higher-quality sound than the first method, but it is not 
suitable for speech and complex sounds without a great deal of work on 
your part. Figure 12-1 illustra tes how a wave table is used by the Sound 
Manager to produce sound. 

SFF 

sao 

sao +-----------. 
Olh 
sample 

Wave· table 

5111h 
samplo 

Output sound 

Figure 12-1. How the Sound Manager uses a wave table 

The third method requires that you have digitally recorded the sound 
you want to play. You can do this using the sound input capabilities of the 
Macintosh LC or Ilsi, or the Farallon Sound Recorder, for example. In this 
method, you provide all the data for the sound-similar to the way sound 



Ill> Sound Data Structures 189 

is recorded on CDs. This third method is similar to the second method 
except that instead of describing a periodic waveform, you are describing 
the entire sound from start to finish. You can use this method to produce 
speech and virtually any other sound. 

The Sound Manager uses a different 1Snth1 resource, or synthesizer, to 
take each of these kinds of data and output sound. Synthesizers are 
described later in this ch apter. 

...., Sound Data Structures 

The Sound Manager can use either an 1Snd 1 resource or a file as a source 
from which to create sounds. You can use 1Snd 1 resources to describe 
sounds, digitized voice, special effects, and so on. The file format for digi
tized sound is especially useful for storing large amounts of sound data. 
You will learn about the resource and the file format briefly, and then look 
at how they are used to create sounds . You will later revisit them to exam
ine their detailed internal structure . 

..,. Sound Resources 

You can use the 1Snd 1 resource to describe how to create a sound by using 
sound commands, which will be described in a later section, and optional 
sound data. An 1Snd 1 resource specifies which synthesizers should be used 
to create sound: note, wave table, or sampled sound. 

The 1Snd I resource has two different formats. Format version 1 is the 
general format and is the only format that application programmers 
should use. Format version 2 is specifically for HyperCard and should not 
be used, since version 1 is a superset of version 2. The general structure of 
an 1Snd 1 resource is illustrated in Figure 12-2. In the figure, note that the 
arrays are variable in length. 

Note ..,. Sound resource IDs 0 to $1FFF are reserved for Apple. Resource 
IDs 1 to 4 are defined to be the standard system beeps . 

..,. Sound Files 

Sounds can be s tored in a disk file using the Audio Interchange File For
mat (AIFF). This format is not described in Inside Macintosh, but in a sepa
rate document available from APDA. 



190 IJJ> Chapter 12 The Sound Manager 

'snd ' format version 

Number of synthesizers 

Array of synthesizers 

Number of sound commands 

Array of sound commands 

Offset to data 

Number of sound samples 

Sampling rate 

Offset to start of loop 

Offset to end of loop 

Base note 

Array of sound data 

Each element in the array of 
synthesizers looks like: 

Synthesizer resource id 

Initialization parameter 

Each sound command in the 
array of commands looks like: 

Command 

Parameter 1 

Parameter 2 

The array of sound data is simply a 
string of bytes (one byte per sample). 

Figure 12-2. The struc ture of a format version 1 'snd ' resource 

...,. Calling the Sound Manager at a High Level 
The high -level calls to the Sound Manager-SysBeep, SndPlay, and 
SndStartFilePlay-provide easy, but still powerful ways to use sound in 
applications. Some calls can be used as either a high-level or a low-level 
call. These calls are discussed in this and a la ter section. If you need only 
high-level sound capability, you' ll only need to read this section to be 
able to use the Sound Manager. 

IJIJo. Calling SysBeep 

The simplest way to produce sound is with the SysBeep call, which was 
moved from the System Utilities to the Sound Manager in System 7. You 
must supply a parameter when calling SysBeep for compatibility reasons, 
but the Sound Manager ignores it. The Sound Manager tries to reserve 
enough CPU time to play the beep if the system beep is enabled. 



By the Way ..,., 

..,. Architecture o f the Sound Manager 191 

If you play the simple beep on a Macintosh Plus or SE, the Sound 
Manager will use the ROM code instead of the new Sound Man
ager code. This is to maintain compatibility with some early third
party MIDI applications. 

Enable and disable the system beep by calling the SndSetSysBeepState 
routine. SndGetSysBeepState returns the current state of the system 
beep. The default state is enabled. 

Important ..,. Consider using the Notification Manager if you 're using SysBeep 
to warn the user. The Notification Manager offers more features 
for not much more work. 

~ Producing Sounds the Easy Way with SndPiay 

The most painless way to produce interesting sounds is with the SndPlay 
call. All you have to do is pass it the handle to an 'snd ' resource, and 
you 've got sound. You don' t have to know anything about modifiers, syn
thesizers, or channels. SndPlay can play sounds from sound commands 
andjor sound data. The sound data can be compressed or uncompressed. 

~ Using SndStartFilePiay to Play Sounds on Disk 

SndStartFilePlay allows you to play arbitrarily long sounds from either a 
disk file or a resource, and it turns your Macintosh into an expensive tape 
recorder. If you use SndStartFilePlay as a high-level call, then the Sound 
Manager automatically allocates and deallocates a sound channel. This 
call must be executed synchronously as a high-level call, because you 
have no way to be sure tha t the call has completed when quitting the 
application . 

..,. Architecture of the Sound Manager 
The architecture of the Sound Manager allows for both simple and com
plex uses of sound. An overview of the architecture is shown in Figure 
12-3. The major components of the architecture include application(s), 
the Sound Manager, sound channels, modifiers, syn thesizers, and sound 
hardware. Let's look at each of these components in turn. 



192 ..,. Chapter 12 The Sound Manager 

Application 

Sound Channel Sound Channel 

Figure 12-3. The arc hitecture of t he Sound Manager 

.,... Applications and Sound Channe ls 

Applica tions create sound commands by making calls to the Sound Ma n
ager. An application can have more than one channel open at a time, and 
several applications can have channels open at the same time. 

A sound channel is a firs t-in, firs t-out (FIFO) queue of sound com
mands. Each command channel is owned and opera ted by one applica
tion and channels cannot be shared between applications. A sound 
channel is linked to a particular synthesizer. Most applications do not 
have to deal with sound channels directly because they are managed by 
the high-level calls of the Sound Manager. 



11- Architecture of the Sound Manager 193 

IJJJ- Modifiers 

Modifiers are small pieces of code that filter or process sound commands 
before they reach their intended synthesizer. You might create a modifier 
to change the key of a ll notes passing through it, or to double the length 
of each note. Since modifiers operate in real time, they cannot perform 
complex tables which take a long time to complete. More than one modi
fier can be installed into a channel, although modifiers can only be 
installed into channels opened with the SndNewChannel call. 

The only communication between a modifier and the Sound Manager 
is the re turn value of the modifier. If the return value is FALSE, then the 
modifier has completed processing a command. If the return value is 
TRUE, then the modifier is still p rocessing the command. 

A modifier can change, remove, or ignore commands passed to it. Also, 
a modifier can create new commands that will be processed by any modi
fiers that follow it in the queue or the synthesizer. A modifier can send 
commands to its succeeding modifier, the synthesizer (if there are no 
more modifiers), or the Sound Manager. 

A modifier must support the initCmd and freeCmd commands, which 
the Sound Manager uses to install and remove modifiers . Your application 
can also send commands to the firs t modifier in a chain, bypassing the 
command queue. You might do this to stop all sound immediately. Note 
that your application cannot send commands directly to any succeeding 
modifiers. 

IJJJ- Synthesizers and 'snth' Resources 

Synthesizers, or 'snth' resources, are used to ta lk to the sound hardware. 
These resources are similar in nature to device drivers, but they have a 
different interface. Table 12-1 lists the various synthesizer resource IDs 
and their uses. The two kinds of synthesizers are as follows: 

• Playback synthesizers, which control hardware to create sounds 
• Utility synthesizers, which are used to compress and decompress 

sound data 

Synthesizers can send commands back to the Sound Manager. 
To request the playback synthesizers, use the generic resource ID-that 

is, the ID should be in the range 0 through $799. The Sound Manager is 
responsible for choosing the appropriate synthesizer for the hardware on 
which your application is running. If the application is running on a Mac
intosh Plus or SE, the Sound Manager will add $1000 to the requested 



194 Ill> Chapter 12 The Sound Manager 

Table 12-1. The 'snth' resources and their uses 

Resource JD 
Supported 
Mac in tos/1 

(hex) Name Tltf!.e Coml!_ufers 

1 Note synthesizer playback All 
3 Wave-table synthesizer playback All 
5 Sampled-sound synthesizer playback All 
11 MACE (3:1} utility All 
13 MACE (6:1) utility All 
O-FF Reserved for Apple All 
100-799 Available for developers All 
801 Note synthesizer playback Mac with ASC 
803 Wave-table synthesizer playback Mac with ASC 
805 Sampled-sound synthesizer playback Mac with ASC 
800-8FF Reserved for Apple Mac with ASC 
900-999 Available for developers Mac with ASC 
1001 Note synthesizer playback Mac Plus or SE 
1003 Wave-table synthesizer playback Mac Plus or SE 
1005 Sampled-sound synthesizer playback Mac Plus or SE 
1000-lOFF Reserved for Apple Mac Plus or SE 
1100- 1199 Available for developers Mac Plus or SE 

synthesizer resource ID. On the other hand, if your application is running 
on one of the other machines that has an ASC (Apple Sound Chip), the 
Sound Manager adds $800 to the requested resource ID. If you requested 
the note synthesizer (ID 1), the Sound Manager would actually call 'snth' 
ID $100l.lf you were running on a Macintosh Hex, you would actually be 
using 'snth' lD $801. Software that requests a synthesizer by its generic ID 
will therefore work with third-party hardware and with any future 
Macintoshes that implement sound using different hardware. 

The MACE synthesizers, which are built into system software under 
System 7, implement a software-only compression and decompression 
scheme. MACE stands for Macintosh Audio Compression and Expansion, 
and these routines are separately available as a product through APDA. 
You'd need the APDA version of MACE only if you were planning on 
supporting System 6. These routines are needed because sound data 
grows big very quickly. You can easily accumulate a megabyte of data per 
minute of recorded uncompressed sound. The MACE synthesizers pro-



IJil- Limitations 195 

vide either 3:1 or 6:1 compression and expansion . The 3:1 compression 
maintains reasonably high quality, and the 6:1 compression provides 
lower-quality sound, but higher savings in storage space. 

Files that have been compressed using this code can be expanded and 
played in real time on all Macintosh computers using the sampled-sound 
synthesizers. Only the right channel of stereo data is expanded and 
played on the Macintosh Plus, SE, and Portable. On Macintosh lis, you 
can also compress sound in real time and expand and play back in stereo. 

You can attach only one synthesizer to a given piece of sound hard
ware. You can attach more than one channel to a synthesizer. 

Synthesizers of ID 1, 3, 5, 11, 13, 801, 803, 805, 1001, 1003, and 1005 are 
provided by System 7. The first three synthesizers {1, 3, and 5) are 
placeholders-no code is directly associated v.rith tl1em. By using these three 
synthesizers, the Sound Manager, rather than your application, decides at 
runtime whether to use the $800 or $1000 series of synthesizers . 

..,. Sound Hardware 

One of the primary goals of the Sound Manager is to hide the details of 
the hardware from application developers. Applications should always 
talk to the Sound Manager and never directly to the hardware. This is 
important because the s tandard sound hardware on Macintosh com
puters was improved be tween the Macintosh SE and the Macintosh II 
family of computers. If an application was talking directly to the sound 
hardware on a Macintosh SE, it would not have worked on a Macintosh 
II. In addition to Apple sound hardware, third-party sound hardware is 
available. 

The sound hardware is the lowest level of the sound architecture. This 
hardware translates commands and da ta into sound, generally using a 
digital-to-analog converter to do the job. A Sony chip is used in the Mac
intosh Plus and SE. The Apple Sound Chip (ASC) is used on all later 
models . 

.,.. Limitations 
The number of channels that can be open at one time is limited primarily 
by the CPU speed and the sound hardware. A Macintosh II can support 
several simultaneous channels, but a Macintosh Plus has enough CPU 
power to support only one channel. An ASC is required to support multi
ple channels. Another limitation is that only the sampled-sound synthe
sizer allows you to mix multiple channels of sound. 



196 Ill> Chapter 12 The Sound Manager 

Table 12-2. 

Command 
(2 blttes) 

timbreCmd 

ampCmd 

freqCmd 

noteCmd 

restCmd 

~ Sound Commands 

You use commands to control the process of creating sound. Commands 
can be issued by an application, the Sound Manager, modifiers, and syn
thesizers. Applications can issue commands one at a time or many at a 
time by using an 'snd ' resource. Commands can be issued to the Sound 
Manager, modifiers, and synthesizers. 

Sound commands have a single structure: 2 bytes for the command 
type, 2 bytes for the first parameter, and 4 bytes for the second parameter. 
The parameters are used for different purposes by different commands. 
Table 12-2lists all the Sound Manager commands, who might issue them, 
and what their purpose is. 

The high-order bit of the command field is used as a Boolean. This field 
is used only if the command is in an 'snd' resource. If the bit is set, then 
the second parameter specifies the offset from the beginning of the 
resource to where the data is located. 

Sound commands sorted by command type and command name 

Parameter 1 Parameter 2 Command 
(2 bl[_tes) (4 b1Ltes) I ssuer TlLl!.e Descrir!_tion 
timbre 0 A,M n Changes timbre of 

a sound 
amplitude 0 A,M n, w, s Changes loudness 

of a sound 
0 frequency A,M n, w, s Changes pitch of a 

note 
duration amplitude and A,M n, w, s Plays a note 

frequency 
duration 0 A,M n, w, s Rests a channel 

waveTableCmd length pointer A w Installs a wave 
table 

bufferCmd 0 pointer A, S s Plays a sampled 
sound 

continueCmd 0 pointer A s Continues playing a 
sampled sound 

convertCmd compression ID pointer A s Compresses or 
expands sound data 

rateCmd 0 rate A s Changes the pitch 
of a sampled sound 

relnitCmd 0 initialization A, S s Reinitializes a 
options channel 



..,. Sound Commands 197 

Table 12-2. Sound commands (continued) 

Comma11d Parameter 1 Parameter 2 Command 
(2 btLfes) (2 btLfes) (4 btLfes) Issuer TtLf!_e Descrif!_ lioll 

sizeCmd compression ID pointer A s Changes the pitch 
of a sampled sound 

soundCmd 0 pointer A s Installs a sound as 
an instrument 

callBackCmd appl ication application A c Executes a callback 
defined defined procedure 

emptyCmd 0 0 s c Does nothing 
pauseCmd 0 0 A,M c Pauses processing 
resumeCmd 0 0 A,M c Resumes processing 
syncCmd count identifier A c Synchronizes 

channels 
waitCmd duration 0 A,M c Suspends 

processing in a 
channel 

avai lableCmd result initialization A u Checks whether an 
options initialization is 

supported 

flushCmd 0 0 A u Flushes a channel 

freeCmd 0 0 s u Frees a channel 
howOftenCmd period pointer M u Sets period for 

tickleCmd 
initCmd 0 initia lization s u Initializes a channel 

options 
loadCmd 0 initialization A u Reports CPU load 

options 
nullCmd 0 0 M u Does nothing 
quietCmd 0 0 A u Stops a sound 
requestNextCmd count 0 s u Sends next 

command 
tickleCmd 0 0 s u Does a periodic 

action 
total Load Cmd 0 initialization A u Reports CPU load 

options 
versionCmd 0 version A, S u Reports synth esizer 

version 
wakeUpCmd period pointer M u Sends a tickleCmd 

Codes for Issuer: A = application, M = modifier, S = Sound Manager 
Codes for Command Type: n = note synthesizer command, w = wave-table synthesizer command, 
s = sampled-sound synthesizer command, u = utility command, c = synchronization-control com-
mand 



198 ..,. Chapter 12 The Sound Manager 

Some of these sound commands will be explained in the following sec
tions. Refer to the Sound Manager chapter of Inside Macintoslt , Volume VI 
for the details of the rest of them . 

...,. Calling the Sound Manager at a Low Level 
The low-level calls to the Sound Manager give you more control over 
sound, at the expense of additional complexity in your code. 

~ Managing Channels 

To use the low-level calls, first allocate and open a sound channel with the 
SndNewChannel call. At this time, you' ll tell the Sound Manager which 
synthesizer to use and how to initialize it. For wave-table synthesizers, 
you can ask for one of four channels. For sampled-sound synthesizers, 
you can ask for the left andjor right channel, mono or stereo output, 
handling of 3:1 or 6:1 compressed sound data, and the sampling rate. You 
can also specify some conversion options. The default size for a channel is 
128 commands. 

When you are finished, close and dealloca te the channel using the Snd
DisposeChannel call. When making this call, specify whether the chan
nel should be flushed before closing it. Close the channel as soon as 
you're done with it. The Sound Manager attempts to manage CPU cycles, 
and it will not release the cycles associated with a channel until that chan
nel has been closed. 

~ SndDoCommand and SndDolmmediate 

A more powerful but more complex way to use sound is with the Snd
DoCommand and SndDolmmediate calls. Once a channel has been suc
cessfully opened, you can use SndDoCommand, which places a single 
sound command in the sound channel you specify. You can also indicate 
whether the Sound Manager should return with an error if the queue is 
fu ll, or wait until there is space to add it. 

Th e SndDolmmediate call directly places a single sound command to 
the first modifier or the synthesizer (if there are no modifiers), and it 
bypasses the command queue maintained by the channel. 



.,.. Calling the Sound Manager at a Low Level 199 

..,.. Playing Notes and Installing Instruments 

Use the SndDoCommand or SndDolmmediate call and a noteCmd 
sound command to play individual notes on a channel. You'll need to 
specify the duration, volume, and frequency of the note in the command. 
Notes can be played using any of the three standard synthesizers. 

Use the waveTableCmd sound command to install a wave table as an 
instrument. The first parameter for this command is the length of the 
wave table, and the second parameter is a pointer to the wave table. If the 
wave table is not 512 bytes long, the Sound Manager resamples it so that 
it becomes 512 bytes long. You can then play notes using the wave table 
synthesizer by using noteCmd sound commands. 

Use the soundCmd sound command to install a sampled sound as an 
instrument. The first parameter should be NIL. The second parameter is a 
pointer to the sampled sound (which should be locked in memory), which 
can be an 1Snd 1 resource. In this case, pass a pointer to this resource in 
soundCmd. When you're done with the sound, unlock it. 

..,.. Playing Sampled Sounds 

Use the SndDoCommand or SndDolmmediate call to play and control 
sampled sounds. If you want to play a sound only once, you can use the 
bufferCmd sound command. The sound can be compressed or not. The 
first parameter should be NIL. The second parameter for this command is 
a pointer to a standard sound header (if the sound is mono and is not 
compressed), an extended sound header (for stereo sounds), or a com
pressed sound header. These headers are described in detail in the Sound 
Manager chapter of Inside Macintosh, Volume VI. 

The rateCmd sound command allows you to change the pitch of the 
sound, and the continueCmd sound command enables you to play a long 
sampled sound in smaller sections. You should use bufferCmd for the 
first section and continueCmd for the following sections . 

..,.. Playing Sampled Sounds from Disk 

You can control the process of playing sampled sounds from disk by call
ing lower levels of the Sound Manager. To do this, call SndNewChannel 
to fi rst open a channel. Then you can call SndStartFilePlay to play either 
an 1Snd 1 resource from disk or an AIFF-formatted file of sound data. At 
this time, specify whether the sound should be played synchronously or 
asynchronously. 



200 ..,. Chapter 12 The Sound Manager 

If you choose asynchronous play, you can control the channel by using 
the SndPauseFilePlay and SndStopFilePlay system calls. These ca lls 
pause or stop the sound channel that is playing the sound. 

IJI>- Managing Sound Channels 

You use the quietCmd, flushCmd, waitCmd, and pauseCmd sound 
commands to control the activity of a sound channel. 

The quietCmd sound command stops a sound in progress if it is issued 
by a SndDolmmediate call. This sound command stops the sound being 
played, and the channel continues to the next command in the queue. 

The OushCmd sound command removes all the sound commands, but 
will not disturb the sound currently being played. The Sound Manager 
sends a flushCmd followed by a quietCmd when you call SndDispose
Channel. This is what you should do as well if you want to completely 
stop a channel. 

Use the waitCmd sound command to suspend all activities on a chan
nel for the specified amount of time. This command is useful with both 
the SndDoCommand and SndDolmmediate calls. In the former case, 
the channel will be suspended whenever waitCmd becomes the curren t 
command. In the la tter case, the channel will be suspended immediately. 

To suspend a ll activities on a channel for an indefinite amount of time, 
use the pauseCmd sound command. Nothing further will happen on this 
channel until it receives a tickleCmd or resumeCmd sound command. 

By adding a syncCmd sound command to each channel, you can syn
chronize more than one sound channel. The parameters for this com
mand are an identifier and a count. Activity on a channel is suspended 
when syncCmd becomes the current command. Activity is resumed 
when each syncCmd associated with a particular identifier becomes the 
current command. The count tells the Sound Manager how many chan
nels are to be synchronized. 

IJI>- Managing Channel Capacity 

Sound, especially high-quality sound, requires system resources. The 
major determinant of the number and quality of channels that can be 
supported at a time is the CPU capacity. The Sound Manager provides 
two sound commands that can help you decide the number and quali ty of 
channels to use a t runtime. 

The totalLoadCmd sound command returns the total percentage CPU 
load that a new channel with the specified initialization options and any 
existing open channels would use. The Sound Manager figures that if no 



~ Calling the Sound Manager at a Low level 201 

channels are open, 0 percent of the CPU capacity is in use. This is an 
approximation since the Sound Manager has no way of knowing what 
low-level system code (network drivers and so on) might be doing. If the 
CPU load returned by totalLoadCmd is greater than or equal to 100 per
cent, then you probably don't want to open that new channel. 

The loadCmd sound command returns the percentage CPU load that a 
new channel with the specified initialization options would use . 

..,. Compressing and Expanding Sound 

If you want to compress or expand sound data, then you' ll need to use the 
convertCmd sound command. If you need to play a compressed sound, 
you wouldn't use these sound commands, but rather the SndPlay call or 
the bufferCmd sound command. The convertCmd sound command uses 
the MACE utility synthesizers. 

The sizeCmd sound command is useful if you need to know the amount 
of space that the converted data will reqwxe. You'd need to know this if 
you were managing the memory required for the conversion process. 

To compress sound data, issue the convertCmd sound command using 
the SndControl system call. The parameters for this call are the synthe
sizer resource ID (to select 3:1 or 6:1 compression ratio) and a sound com
mand. The parameters for the sound command are the compression ratio 
and a pointer to a conversion block. A conversion block contains pointers 
to a source and a destination compressed sound header. 

To expand compressed sound data, issue the convertCmd sound com
mand using the SndControl system call. The parameters for this call are 
the synthesizer resource ID (to select 3:1 or 6:1 compression ratio) and a 
sound command. The parameter is a pointer to a conversion block, which 
contains pointers to a source and a destination compressed sound header. 
These headers tell which compression ratio is to be used. 

There are also some high -level routines for compressing and expanding 
sound data at ratios of 1:3 or 1:6. These routines are named Comp3tol, 
Comp6tol, Explto3 and Explto6 and were previously available as part of 
the MACE package. All four of these routines work in memory; that is, 
they expand or compress sound data from one memory buffer to another. 
They cannot work directly with sound data in disk files . 

..,. Compatibility and the Sound Manager 

At this time, you cannot determine whether the Sound Manager on a 
machine can perform certain functions unless you know whether the 
machine has an ASC. 



202 liJI> Chapter 12 The Sound Manager 

Note II> In future versions, you will be able to check for specific sound 
capabilities through additional calls to Gestalt. Until this happens, 
you'll h ave to check for the existence of the chip. 

Use the Gestalt system call with a selector of gestaltHardwareAttr to 
determine whether the current machine has an ASC. If the gestaltHas
ASC bit is set, then the machine has the chip. 

Call Gestalt with the gestaltSoundAttr selector to determine whether 
the current machine can play stereo sounds (in stereo, not in mono) or 
whether you can mix the channels on the external speaker. If the gestalt
StereoCapability or the gestaltStereoMixing bit is on, then those capabili
ties are available. 

You will also be informed if the sound input routines are available, if 
any built-in input device is available, and if any sound input device is 
available. 

To find out which version of the Sound Manager is running on the 
current machine, call SndSoundManagerVersion. This call returns a 
long integer whose contents should be interpreted as the first 4 bytes of a 
'vers' resource. 

If you are using the MACE routines, check which version is available 
by calling MACEVersion. This call also returns a long integer whose con
tents should be interpreted as the first 4 bytes of a 'vers' resource. 

If your application is using the sound input capabilities of the Sound 
Manager, verify which version is running by calling SPBVersion. It also 
returns a long integer whose contents should be interpreted as the first 4 
bytes of a 'vers' resource. 

llll> Getting Sound Status Information 

To find out the status of a sound channel, use the SndChannelStatus call, 
which returns the initialization parameters that were accepted and the 
CPU load for this channel. If the channel is being used to play a sound 
from disk, this call returns whether the channel is paused or busy. If this 
channel is busy, this call also returns the starting time, ending time, and 
current time for playing from disk. 

To inquire about the status of all sound channels that have been 
opened by all current applications, call SndManagerStatus. This call 
returns the maximum load on all channels, the number of allocated chan
nels, and the current load on all channels. 



Ill> Recording Sounds 203 

.,.. Installing Modifiers 

You can install a modifier by calling SndAddModifier. To specify the 
modifier, you use either a procedure pointer or an 'snth' resource ID. You 
need to specify the channel (which must be open), and you can optionally 
specify some initialization parameters, which are unique for each modi
fier. For the details on how to write a modifier, refer to the Sound Man
ager chapter of Inside Macintosh, Volume VI. 

The modifier is installed ahead of any previously installed modifiers 
and the synthesizer. Modifiers can be installed only on channels that were 
opened with a SndNewChannel ca ll . 

.,... Recording Sounds 
Sound input was added to the Macintosh operating system with the intro
duction of the Macintosh LC and Ilsi, just before the introduction of Sys
tem 7. Let's look at how to use this new capability . 

.,.. Sound Input and Its Implications 

Now that sound input is supported by the operating system, many more 
applications can take advantage of what was a specialized capability. What 
are the implica tions of sound input? First of all, sound input is another step 
in the direction of providing operating-system support for multimedia data, 
sound being one of the basic media forms. Apple is encouraging all devel
opers to support sound in applications if it makes sense. 

What can applications (other than the obvious, such as music applica
tions) do with sound? One practical use for sound input is to support an 
audio note-taking capability, so that users can point to something on a 
display and dictate a note. Many people reviewing documents might find 
this a more na tural way to give feedback than typing. Another use might 
be to add a voice mail capability to existing electronic mail systems. 

The Advanced Technology Group at Apple is working on a set of 
human interface guidelines for sound. These guidelines will fit this new 
sound capability into the existing human interface, without causing any 
disruptions. Apple will also publish a set of Technical Notes on some of 
the lower-level facilities, such as editing notes, storing them, representing 
them on the screen, and compressing them. 



204 ..,. Chapter 12 The Sound Manager 

.,... Sound Input Devices 
. 

The Sound Manager provides a way for sound input devices to register 
themselves, whether the device is internal (built-in) or external to the 
Macintosh. If any sound input devices are registered with the Sound 
Manager, then when the user brings up the Sound control panel, the user 
will be presented with a scrollable list of these devices. The user can then 
select the current sound input device using the same process as choosing a 
printer. 

The Sound control panel also includes two buttons, Add and Remove, 
if the application uses any sound input devices. These buttons a llow the 
user to record a new system sound or remove existing sounds. Figure 12-4 
shows the Sound control panel. The list of microphones and the " Add ... " 
button are only displayed on Macintoshes that have an installed sound 
input device. 

Speaker 
Volume 

Microphones 

--. 
l:tlfllfi 

Sound 

Alert Sounds 

( Add... J ( Remoue J 

Figure 12-4. The Sound control panel 



~ Recording Sounds 205 

.,.. Using the High-Level Interface to Record Sounds 

The h igh-level interface to record sounds is simple and easy to use-it has 
only three routines. Call SndRecord to record sounds from the currently 
selected sound input device to memory. Among the parameters for this 
routine, you' ll need to specify where the sound should be s tored in mem
ory and the qua lity of the sound. The three levels of quality are as follows: 

• Best-Uses the most memory, but provides the best sound because 
no compression is done 

• Better-Uses less memory by compressing the sou nd at a 3:1 ratio; 
sui ta ble for music 

• Good-Uses the least amount of memory by compressing the 
sound at a 6:1 ratio; suitable for voice 

SndRecord displays a dialog box tha t resembles the control panel of a 
tape recorder. The user can record, pause, stop, and play a sound. When 
the user is satisfied with the sound, he or she can press the Save button or 
else use the Cancel b u tton . Figure 12-5 shows the SndRecord dialog box. 
You can use the SndPlay routine, discussed earlier in this chapter, to play 
back the sound. 

C ~[!D[I] <])) 
( Cancel ) Record Stop Pause Play 

¢ ) :02 Saue 
0 seconds :10 

Figure 12-5. The SndRecord d ia log box 

Call SndRecordToFile to record sounds from the curren tly selected 
sound input device to a d isk file. This routine takes the same parameters 
as SndRecord, except that instead of a handle, you ' ll give a working 
directory refNum and a fi le name. lt displays the same dialog as Snd
Record. 



206 ..,. Chapter 12 The Sound Manager 

.,. Using the Low-Level Interface to Record Sounds 

The low-level sound input interface is provided for applica tions tha t 
require more control over the sound input process and for sound input 
device drivers. The low-level routines use the SPB (Sound-input Parame
ter Block) da ta structure, which includes fields such as the number of 
bytes to record (when recording is completed, it contains the number of 
bytes recorded), the number of milliseconds to record, a pointer to the 
buffer where recorded sound data should be stored , and a pointer to a 
completion routine (which is executed when recording termina tes). 

Call SPBGetlndexedDevice to get the name and icon of the sound 
input device by index. By starting with an index of 1 and continuing until 
you get an error code of badSoundlnDevice, you can get a list of all avail 
able sound input devices. 

To open a sound input device, call SPBOpenDevice. Specify the device 
by name and, if this call is successful, it will return a sound input refer
ence number. You' ll use this number when filling out an SPB record to 
use with other calls. 

Call SPBGetDevicelnfo to get information about a sound input device. 
You must pass a selector (similar to calling Gestalt) to get th e particular 
information you' re interes ted in. Call SPBSetDevicelnfo to set the sta te 
of a sound input device. You' ll a lso need to use a selector when using this 
call. Examples of selectors are lis ted in Table 12-3. Some selectors can be 
used with both calls; others can be used with only one of these calls. 

Table 12-3. Examples of sound input selectors 

Selector Returns ------------------------------------------------
'SSav' Number of sample sizes supported by the sound input device 

and a list of them 
'SSiz' Size of the sample produced by the device 
'leon' Sound input device icon and mask 
'ChAv' Number of channels available 
'Chan' Number of channels to record 
'AGC ' State of Automatic Gain Control 

Call SPBRecord to start recording sounds to memory, passing an SPB 
data s tructure. Call SPBRecordToFile to record sounds to a disk fil e. 
Three routines allow you to control the recording process: SPBPause
Recording, SPBResumeRecording, and SPBStopRecording. 

Two routines are provided tha t simplify recording sounds into an 'snd ' 
resource or an AIFF file. Call SetupSndHeader or SetupAIFFHeader, 



IJl>- Conclusion 207 

passing the many parameters required to create an 'snd 'or AlFF header. 
The easiest way to use either of these calls is to call them first with a 
buffer length of 0. In this case, the call will simply calculate the length of 
the header but not create the header. Reserve this much space in the 
resource or file, and then record the sound. When the sound has been 
recorded, make another call to SetupSndHeader or SetupAIFFHeader, 
passing the final length of the sound. This time the header will be created 
(in the appropriate place). 

To get the current status of the recording process, call SPBGetRecord
ingStatus. This routine returns parameters such as the number of bytes 
recorded so far, the number of milliseconds recorded so far, and the meter 
level (sound level). Two utility routines are provided to convert behveen 
time and bytes: SPBMilliSecondsToBytes and SPBBytesToMilli
Seconds. 

Three routines are provided for sound input drivers. Call SPBClose
Device to close a sound input device that you previously opened. You 
need to pass it the sound input reference number of the device you want 
to close. SPBSignlnDevice registers a sound input device with the Sound 
Manager. SPBSignOutDevice unregisters a sound input device with the 
Sound Manager. SPBGetlndexedDevice returns the name and icon of 
the 11th device . 

.,... Conclusion 

Get Info ~ 

The Sound Manager offers a wide variety of ways to use sound in appli
cations. Applications that simply play sounds can use the high-level 
interface to the Sound Manager. Music and sound applications can use 
the low-level interface for more control over the processing of sound. 

The Sound Manager in System 7 provides another new capability, that 
of recording sounds. An easy-to-use high-level interface is provided for 
applications, and a low-level interface is provided primarily for sound 
input drivers. 

For more information on the Sound Manager, refer to the Sound 
Manager chapter of Inside Macintosh, Volume VI. 

The Audio Interchange File Format is available from APDA as a 
document titled Audio Intercha11ge File Format. 

The MACE toolkit is also available from APDA for anyone 
interested in using these routines under System 6. (This toolkit has 
been incorporated into the Sound Manager under System 7.) This 
product is called the Macintosh Audio and Cornpress ion Toolkit. 



13 ~ The Communications 
Toolbox 

..,. Introduction 
In this chapter, you will look at the set of managers known collectively as 
the Communications Toolbox. This toolbox provides a s tandardized set of 
communications services that make it easy for you to add file transfer serv
ices, terminal emulation, and data connection services to any applica tion. 

Applications programmers have often avoided dealing with communi
cations because it seems like a s trange and unusual world compared to 
wri ting applications software. The Communications Too lbox provides 
powerful communications functions tha t you can use without having to 
do a lot of work. It provides facilities for arbitrating between applications 
that want to use a communications device. 

In this chapter, you' ll fixst look at the architecture of the Communica
tions Toolbox. You'll learn about the various components of the toolbox 
and how they work together. Then you' ll look at each of the major aspects 
of the toolbox in turn: programming with the Connection Manager, writing 
a connection tool, programming with the Terminal Manager, writing a ter
minal (emulation) tool, programming with the File Transfer Manager, writ
ing a file transfer tool, programming with the Communications Resource 
Manager, and programming with the Communications Toolbox Utilities . 

..,. The Architecture of the Communications 
Toolbox 
The Communications Toolbox provides three basic capabilities: connect
ing with another computer, emulating a terminal, and h·ansferring fi les 
using a protocol. The toolbox doesn ' t actually provide these capabili ties, 

209 



210 IJJ. Chapter 13 The Communications Toolbox 

but ra ther provides a framework and a programmatic interface for appli
cations to use these capabilities. The Communications Toolbox in System 
7 consists of five managers: 

• Connection Manager 

• Terminal Manager 

• File Transfer Manager 

• Communications Resource Manager 
• Communications Toolbox Utilities 

The work of running a connection, emulating a terminal, and transferring 
a file is not implemented in this toolbox, but in tools that are called by the 
first three managers. Connection tools, terminal tools, and file transfer 
tools are separate pieces of code, each of which lives in its own file. 

The overall architecture of the Communications Toolbox is illustra ted 
in Figure 13-1. Pieces of code that exist in their own files are drawn with a 
thicker line. The Communications Toolbox is part of the operating system, 
starting with System 7. However, it still has the appearance of a separable 
subsystem. 

Notice that an application does not call a tool directly. It always calls one 
of the managers of the Communications Toolbox and lets the manager call 
the current tool. Although this is not illustrated here, an application can use 
more than one tool at a time. That is, an application could use more than 
one connection tool at a time, or it could use the same tool more than once. 
At the same time, it can also be using file transfer tools and terminal tools. 
Other applications can also be using the same tools as your application. 

The application and tools can use the routines of the Communications 
Resource Manager and the Communica tions Toolbox Utilities. All the var
ious pieces of code use the other routines of the Macintosh operating 
system and Toolbox (which is different from the Communications Tool
box). The operating system talks to the hardware primarily through 
device drivers. 

Each tool has the same relationship with its manager that a printer 
driver has with the Print Manager. The majority of the work happens in 
the tool or driver, but the manager provides a standard interface to the 
capability. 

You can use any of the three capabi.lity managers (Connection, Termi
nal or File Transfer) independently of the other two. For example, you can 
use the Connection Manager without using either the Terminal Manager 
or the File Transfer Manager. If you use any of these three managers, 
however, you end up using the Communica tions Resource Manager and 



..,.. The Architecture of the Communications Toolbox 211 

Comm 
Toolbox 

Operating 
System 

Application 

Hardware 

Figure 13-l . The architecture of the Communicat ions Toolbox 

the Communications Toolbox Utilities, because the tools almost always 
use some of the routines in the latter two managers. You must therefore 
initialize these two managers before initializing and using any of the three 
capability managers . 

..,. Data Struc tures 

Two kinds of da ta sh·uctures are used by the managers of the Communi
cations Toolbox. Connection, terminal, and file transfer records are the 
first kind of important data s tructure. Almost every call to their managers 



212 ..,.. Chapter 13 The Communications Toolbox 

requires a handle to one of these records. These records store all the data 
associated with each use of one of those managers. This method of han
dling the data means that those three managers can be used more than 
once by one or more applications. 

Configuration records, the second important type of data structure, are 
created and owned by tools. Each tool has its own unique configuration 
record; the contents and size of the record may differ from tool to tool. 
You can store a configuration record in a document file . Before using the 
record again, you should ask its manager to validate it. 

Note ll> The Communications Toolbox will be extended to encompass other 
managers. As System 7 was released, Apple was developing an 
ISDN (Integrated Services Digital Network) Developer's Toolkit. 
Two components of the ISDN Developer's Toolkit are an ISDN 
Serial Connection Tool and a new Communications Toolbox man
ager known as the Integrated Voice Data Manager. This toolkit 
also provides a NuBus card and various software tools to enable 
developers to start creating software that will take advantage of 
ISDN, a digital technology that will eventually replace the analog 
telephone system we have today. ISDN is widely available in cer
tain countries, such as France and Japan, but is slowly becoming 
available in the U.S. The ISDN Developer's Toolkit will be avail
able through APDA in the future . 

.,_ The Communications Toolbox in the Larger Picture 

Apple has three ca tegories of networking and communications software: 
AppleTalk, packages to support various protocols (such as X.25, TCP j lP, 
and APPC), and now the Communications Toolbox. There is little con
nection between the software in any of these categories. lf you are an 
application programmer, then you' ll have to learn the details of each of 
these packages separately; the application programming interface (API) 
for every one of these packages is completely different from all the others . 

.,. Compatibility and the Communications 
Toolbox 
Call Gestalt with a selector of gestaltCTBVersion to find out the current 
version of the Communications Toolbox. Version 2 of the toolbox was 
shipped as part of System 7. 



..,. Programming with the Connection Manager 213 

Before using any of the Communications Toolbox managers, verify that 
these managers are available on the current Macintosh . Do this by calling 
Gestalt with the following selectors: 

• gestaltConnMgrAttr for the attributes of the Connection Manager 

• gestaltCRMAttr for the attributes of the Communication Resource 
Manager 

• gesta ltFXfrMgrAttr for the a ttributes of the File Transfer Manager 

• gesta ltTermMgrAttr for the attributes of the Terminal Manager 

Under System 7, the only attribute returned for these four selectors is 
that the appropriate manager is available or not available. 

Each of the m anagers in the Communications Toolbox has a routine for 
getting its version number. You have to check that each of these calls 
exists before using them, so calling Gestalt is less work. These rou tines 
are as follows: 

• CMGetCMVersion (Connection Manager) 

• TMGetTMVersion (Terminal Manager) 
• FTGetFTVersion (File Transfer Manager) 
• CRMGetCRMVersion (Communications Resource Manager) 
• CTBGetCTBVersion (Communications Toolbox Utilities) 

Version 2 of each of these managers was shipped as part of System 7. If 
you're using Gestalt to get the version number of the Communications 
Toolbox, then you don ' t need to use these calls. 

~ Programming with the Connection Manager 
The Connection Manager provides connection services between one pro
cess and another. The other process can be on another machine (it can be 
another Macintosh or something else) or on the same machine. The ser
vices provided by the Connection Manager are independent of protocols. 
Protocols are h andled by a lower level of code known as connection tools, 
which are described in the next section. The Connection Manager does 
not provide support for transmission error detection and correction or for 
flow control, w hich can all be provided by the connection tool. An exam
ple of a connection tool is shown in Figure 13-2. 

The Connection Manager supports up to three channels per connec
tion: the data, attention, and control channels. The data channel is the 



214 ~ Chapter 13 The Communications Toolbox 

Connection Settings 

Method: I Apple Modem Tool 

Modem Settings 

0 Answer Phone After[.·~·::.·:.·:J Rings 

@ Dia 1 Phone Number 1555-121 2 

~ Redial ~Times 

Every ~Seconds 

n OK D 
( Cancel J 

Printer Port 

Figure 13-2. Set up Dialog presented by the Apple Modem 
connection tool 

primary channel for communicating over the connection. Depending on 
the connection tool, the other two channels may or may not be imple
mented. You can use the attention channel to warn the other end of the 
connection that you're closing the connection. The control channel can be 
used to keep the connection control information separate from the data 
flowing over the connection. 

Connection tools bear a similar relationship to the Connection Manager 
that printer drivers have with the Print Manager. Figure 13-3 illustrates 
this analogy. The Terminal and File Transfer Managers also fit into this 
analogy. An application calls the Print Manager, which performs rela
tively little work. The Print Manager calls the printer driver selected by 
the user to do the work of printing. In a similar way, an application calls 
the Connection Manager, which performs relatively little work. The Con
nection Manager calls the connection tool selected by the user to operate 
the connection. 



..,. Programming with the Connection Manager 215 

Application Application 

J .. ~~ 

~r ~, 

Print Manager 
Connection 

Manager 

J .. J~ 

~lr 
,, 

Printer Driver Connection Tool 

Figure 13-3. The relationship between connection tools and the 
Connection Manager 

~ The Connection Record 

Applications pass data to the routines of the Connection Manager using a 
connection record. This protocol-independent record contains all the 
details required to manage a connection, such as w hich channel to use 
(data, attention, and jor control), a reference constant, a long word for 
user data, and pointers to the I/0 buffers for the channels used. This 
record also contains configuration records for the selected connection tool 
to store its private data. The connection record is private to the Connec
tion Manager; you are only allowed to directly modify the configuration 
record. The Connection Manager provides a set of routines for modifying 
some of the contents of the record. 

An application can use more than one connection at a time. Your appli
cation will need to allocate a connection record for each connection that 
your application uses. 

~ Using the Connection Manager Routines 

Call InitCM to initialize the Connection Manager. You should have 
already called InitCRM to initialize the Communications Resource Man
ager and InitCTBUtilities to initialize the Communications Toolbox Utili
ties. You must initialize these two managers before using the File Transfer 



216 .,.. Chapter 13 The Co mmunications Toolbox 

Manager, whether you will use any of the routines in the latter two man
agers or not. 

To present the user with the standard dialog box for choosing a connec
tion tool, call the CMChoose routine. This dialog will search for all con
nection tools in the Communications Folder in the System Folder. The 
user selects which tool to use from a pop-up menu on this dialog. The 
user can also configure the tool from this dialog box, such as baud rate, 
parity, and port. 

You can also create a custom dialog instead of using the standard dia
log. Six routines provided as a part of the Connection Manager simplify 
this code to a certain extent. One other method of selecting a connection 
tool is to have your application use a scripting language. In this case, the 
user wouldn' t see a dialog box. 

To interface with a scripting language, use the two routines provided as 
part of the Connection Manager that simplify this process: CMGetConfig 
and CMSetConfig. These routines get a configuration string from and set 
the configuration sh·ing for a connection tool, respectively. Remember 
that these calls are being processed by the connection tool; the Connec
tion Manager does nothing more than provide an API to the tool with 
these calls . 

..,.. Preparing t o Use a Connection 

Use the CMNew routine to create a new connection record. When mak
ing this call, pass the address of the four procedures in your code that will 
send data, receive data, read data from a file, and write data to a fil e. The 
routines that send and receive data can use the Connection Manager to 
perform their function. You'll also need to pass the pointer to a procedure 
that the connection tool can call to find out what environment it's running 
in, such as how wide the data channel is in bits. Last, you' ll need to pass 
the prociD of the connection tool. Get this value by calling CMGet
ProciD. You'll need to specify the name of the connection tool to get its 
prociD, which is assigned dynamically by the Connection Manager. 

As part of processing the CMNew call, the Connection Manager calls 
CMDefault to fill in the configuration records in the connection record. 
The Connection Manager also loads the main procedure of the connec
tion tool (see the next section for details on connection tools). 

Use the CMDefault routine to ask the current connection tool to (allo
cate and) set the connection record to default values. Use the CMValidate 
routine to verify that the connection record is internally consistent. 



~ Programming with the Connection Manager 217 

..,. Opening, Managing, and Closing Connections 

Call CMOpen to open a connection. The Connection Manager uses the 
information in the connection record to accomplish this. You can specify 
whether the open request should be made synchronously or asynchro
nously. If, on the other hand, you want to wait for incoming requests to 
open a connection, call CMListen. This call can also be made synchro
nously or asynchronously, but the latter case is the normal way to use this 
call. You can tell when an incoming request has been made by using the 
CMStatus call. If there is an incoming request, then the cmStatusincom
ingCallRequest bit will be set. To accept or reject an incoming request, call 
CMAccept. Note that you cannot call this routine at interrupt level. 

Your application should call CMidle every time it passes through the 
main event loop. This routine will give the tool h andling the specified 
connection some time to perform its idle-loop tasks. 

You can use the CMStatus call to find out the current status of a connec
tion. In addition to telling you if there is an outstanding request for a con
nection, this routine also tells you whether the following conditions occur: 

• The connection is in the process of being opened, open, or being 
closed 

• Data is present on the data, attention, andjor control channels 
• A read andjor a write is pending on the data, attention, andj or 

control channels 
• The tool is breaking the connection 

To get information on the connection environment, use the CMGet-
ConnEnvirons routine. This call returns the following information. 

• The data transfer rate 
• The width of the channel in bits 
• Which channels are supported by this connection (data, attention, 

andjor control) 
• Whether hardware or software flow control is in use 

This call is useful when using the Terminal or File Transfer Manager. Your 
application may want to use them differently, depending on whether you 
can use the three channels or only one, or depending on the data transfer 
rate. 

Call CMAbort if you need to cancel a pending open operation (having 
used CMOpen asynchronously) or to cancel listening for an incoming 
connection request (having used CMListen asynchronously). 



218 ..,. Chapter 13 The Communications Toolbox 

You can call CMClose to close a connection whether the connection is 
in the process of being opened or has been opened. This call does not 
dealloca te memory; call CMDispose, when you're completely finished 
with the connection, to deallocate the connection record and the data 
structures to which it refers . 

...,. Reading, Writing , and Searc hing over a Connection 

The CMRead and CMWrite routines perform the basic work of reading 
and writing over a connection. Actually, these routines read from and write 
to buffers; the connection tool performs the work of sending or receiving 
this data over the connection. With both of these routines, you supply a 
connection record, the channel, an I/0 buffer, a timeout value, the address 
of a completion routine (which will be called when the request has been 
completed), a flag indicating whether to send an end-of-message signal or 
whether you've received one, and a flag indicating whether this routine 
should be processed synchronously or asynchronously. 

You can have a simultaneous read and write request on a channel of a 
connection. You can' t have more than one read request at a time on a 
given ch annel of a connection. This also holds true for write requests. 

Use the CMIOKill routine to stop a pending read or write request on 
the specified channel (data, attention, or control) . 

Call CMBreak to cause a "break" operation. This operation makes 
sense with some protocols, but not for others. Call CMReset to reset the 
connection. The meaning of this opera tion also depends on the protocol. 

You can ask the Connection Manager to search for a string of up to 255 
bytes in the incoming stream by calling CMAddSearch. The Connection 
Manager adds this search to its list, and calls your callback routine when it 
finds the specified string. Use the CMRemoveSearch routine to remove a 
specific search request, or the CMClearSearch routine to remove all out
standing search requests on a particular connection . 

...,. Handling Events with the Connection Manager Routines 

Use the CMEvent routine to tell the connection tool that the event your 
application just received happened in a window owned by the tool. The 
tool should therefore process the event. 

To tell the connection tool that the menu event your application just 
received happened in a menu owned by the tool, use the CMMenu rou
tine. The tool should therefore process the event. 

You use the CMActivate routine to tell the connection tool that your 
application has received an activate or deactivate event. The tool may 



..,. Writing a Connection Tool 219 

need to do something when this happens, such as installing or removing a 
menu. 

Use the CMResume routine to tell the connection tool that your appli
cation has received a suspend or resume event. When your application is 
going to be running in the background (or returning to the foreground), 
the tool may adjust some of its parameters . 

..,.. Other Connection Manager Routines 

Call CMGetToolName to get the name of the specified connection tool. If 
you want to save the connection tool's configuration, you also need to 
save the name of the tool. 

Use the CMGetRefCon and CMSetRefCon routines to get and set the 
reference constant in the connection record. Use the CMGetUserData 
and CMSetUserData routines to get and set the user data (it's 4 bytes, so 
it can be a handle) in the connection record. 

Call CMGetVersion to get the 'vers' information from the connection 
tool. This information is returned in a handle, which you must dispose of 
when you're done with it. 

..,.. Internationalization and the Connection Manager 

To help internationalize your application, use CMintlToEnglish and 
CMEnglishTolntl, which ask the file transfer tool to translate configura
tion strings from and to other languages. These routines assume that the 
strings are stored in the tool in American English . 

..,. Writing a Connection Tool 
A connection tool implements a particular connection protocol. Connec
tion tools have a s tructure that makes them interchangeable from the 
user's (and application's) point-of-view. That is, it it easy for the user to 
switch from using one connection tool to another. Connection tools bear a 
similar relationship to the Connection Manager that printer drivers have 
with the Print Manager: An application calls the appropriate manager, 
which usually performs relatively little work and calls the tool or driver to 
accomplish most of the work for this ca ll. 

The relationship between the application and various components of the 
Communications Toolbox is illustrated in Figure 13-4. An application 
might call the Connection Manager, which would then call the current 
connection tool. The connection tool might then talk with a device driver 
controlling the communications hardware. This figure also illustrates a 



220 ~ Chapter 13 The Communications Toolbox 

Figure 13-4. The relationship between an applicat ion and 
components of the Communicat ions Toolbox 

more complex example. An application can call the Terminal Manager, 
which could call a temunal tool. This tool might call the Connection Man
ager, which then calls a connection toot which then calls the device driver. 

Connection tools are structured as a set of resources in a single file . A 
connection tool has a basic set of fi ve or six resources. 

• 'cde f' code resource (not the same as a 'CDEF' resource!)-Imple
ments the communications functions of the tool. 

• 'eva!' code resource- Validates connection records when the Con
nection Manager is called usin g the CMValidate call. This code 
also handles the CMDefault call. 

• 'cset' code resource-Handles the tool-settings dialog. 



~ Writing a Connection Tool 221 

• 'cscr' code resource-Handles the interface between a scripting lan
guage and the tool. 

• 'cloc' code resource-Translates this tool's strings be tween English 
and other languages. 

• 'cbnd' bundle resource (optional)-Contains the tool's name and 
lis ts all the resources in this tool. 

All of the code resources ('cdef', 'eva!', 'cset', 'cscr', and 'doc') are called 
by the Connection Manager. The Connection Manager passes along a 
message, which is a code telling the code resource what to do, and a set of 
three parameters. The meaning of the parameters is determined by the 
message. Not all parameters are used for all messages. 

These are not the only resources that are in a connection tool. The other 
resources needed include the resources for dialog boxes and dialog item 
lists. You' ll now look at creating each of the basic six resources in turn . 

..,.. Creating a 'cdef' Resource 

The 'cdef' resource performs the primary functions of the connection tool: 
setting up, using, and closing down a connection using a particular protocol. 

A connection tool might be called by the Connection Manager with any 
of the messages lis ted in Table 13-1 . If your tool does not understand the 
message or cannot support it, then it should return an error message, 
cmNotSupported . Note th at the Connection Manager 's call er can be 
either an application or another communica tions tool. 

Let's now look a t several basic messages that every connection tool 
shou ld support: cmJnitMsg and cmDisposeMsg, cmOpenMsg and 
cmCloseMsg, and cmReadMsg and em WriteMsg. 

The cmlnitMsg message tells your code to initialize for a new connec
tion. This is the time to tell the caller whether this tool supports a data 
channel, an a ttention channel, andjor a control channel. You may need 
to allocate an input and an output buffer. The cmDisposeMsg message 
tells your code to deallocate a local memory (which was allocated when 
you received the cmlnitMsg message). The Connection Manager handles 
deallocating the configuration records and the connection record. If you 
try to dealloca te them, you' ll cause a system crash . 

The cmOpenMsg message tells your tool to open a connection. You'll 
be passed a timeout value (in clock ticks) and perhaps a CMCompletor
Record record, which specifies whether the operation should be per
formed synchronously or asynchronously. This record contains a pointer 
to a completion routine that you must call when the open operation has 
been completed asynchronously. 



222 ..,.. Chapter 13 The Communications Toolbox 

Table 13-1 . Messages for the 'cdef' resource of a connection tool 

Message Name 
cmlnitMsg 
cmDisposeMsg 
cmSuspendMsg 
cmResumeMsg 
cmMenuMsg 
cmEventMsg 

cmActivateMsg 
em Deacti va teMsg 
cmldleMsg 
cmResetMsg 
cmAbortMsg 
cmReadMsg 
cmWriteMsg 
cmStatusMsg 

cmListenMsg 

cmAcceptMsg 
cmCloseMsg 
cmOpenMsg 
cmBreakMsg 
cmlOKillMsg 
cmEnvironsMsg 

Sent to tl1e Connection Tool Wlwt tile Caller: 
Initializes the connection 
Is closing the connection 
Requires the tool to handle a suspend event 
Requires the tool to handle a resume event 
Got a menu event for a menu belonging to this tool 
Got a window event and this event is associated with 
this tool 
Requires the tool to handle an activate event 
Requires the tool to handJe a deactivate event 
Has idle time (but never at interrupt time) 
Requires your tool to reset the connection 
Requires that a pending open or Listen be aborted 
Reads from the connection 
Writes to the connection 
Wants to know the status of the connection from the 
tool (such as whether a read is pending or a write is 
pending) 
Requires the tool to listen for an incoming connection 
request 
Has accepted the connection 
Closes a connection 
Opens a connection 
Sends a break message 
Wants to kill any outstanding read or write requests 
Wants information on the connection (such as baud 
rate and the number of data bits) 

The cmCloseMsg message tells your tool to close a connection. You'll be 
passed a timeout value (in clock ticks) and perhaps a CMCompletor
Record record. You'll need to close the channel and perhaps close the 
input and output drivers. 

The cmReadMsg or cmWriteMsg message tells your connection tool to 
read from or write to the connection . In either case, you'll be passed a 
CmDataBuffer record, a CMCompletorRecord record, and a timeout 
value. The CMDataBuffer record contains the address of the buffer to 
read from (or write to), the number of bytes to read or write, which chan
nel to use (data, a ttention, or control), and an end-of-message flag. If the 
timeout value is 0, you should complete as much of the operation as pos
sible and return. 



IJil> Writing a Connection Tool 223 

.,... Creating a 'cval' Resource 

The 'cval' code resource validates connection records. It must handle two 
messages from the Connection Manager: em ValidateMsg and cmDefault
Msg. If it receives a message it cannot understand, the code should return 
a message of cmNotSupported. 

When processing a cmValidateMsg message, check the connection rec
ord. If the record is valid, return 0; otherwise, rebuild the configuration 
record and return 1. 

When processing a cmDefaultMsg message, set the connection record 
to the default values. Also, if requested, you should allocate a new config
uration record . 

.,... Creating a 'cset' Resource 

The 'cset' code resource handles a dialog box that allows a user to select 
and configure a connection. This code must handle five messages: 
cmSpreflightMsg, cmSsetupMsg, cmSitemMsg, cmSfilterMsg, and cmS
cleanupMsg. If it receives a message it cannot understand, the code 
should return a message of cmNotSupported. 

The cmSpreflightMsg message tells your setup code to initia lize what
ever local variables are needed for the configuration process and to get 
any required resources. 

Use the cmSsetupMsg message to have your setup code initialize the 
configuration dialog box to the current configuration. The cmSitemMsg 
message tells your setup code when an item was selected by the user from 
the configuration dialog. Process the message for that dialog item. 

You use the cmSfil terMsg message to have your setup code fil ter events. 
Your code can handle the event (in which case you should return 1) or 
ignore it (in which case you should return 0). The cmScleanupMsg mes
sage tells your setup code to clean up by deallocating any temporary 
memory required for the configuration process . 

.,... Creating a 'cscr' Resource 

The 'cscr' code resource handles the interface between the connection tool 
and a scripting language. It must handle two messages: cmMgetMsg and 
cmMsetMsg. If it receives a message it cannot understand, the code 
should return a message of cmNotSupported. Note that no standard 
scripting language exists at this time, but you can use various proprietary 
scripting languages-communications programs (such as Software Ven
ture's Microphone II) especially seem to use them. 

The cmMgetMsg message tells your scripting language interface code to 



224 IJJl> Chapter 13 The Communications Toolbox 

return a string description of the current connection record in American Eng
lish. If this description is required in another language, then the string will be 
passed for translation to the 'doc' resource, which will be described shortly. 

The cmMsetMsg message tells your seh.1p code to parse a string and set 
the configuration record accordingly. The string passed to your code will 
be in American English. It might have been translated previously using 
the 'cloc' resource. Your code should return a 0 if there was no problem 
doing this, a - 1 if there was a generic error, a number Jess than -1 if 
there was an operating-system error, and a positive number if you 
cou ldn' t parse the entire s tring (the number being the offset to the last 
character that you successfully parsed). The Connection Manager auto
matically ca lls CMValidate if this message was successfully processed. 

~ Creating a 'cloc' Resource 

The 'cloc' code resource translates messages for your connection tool 
between American English and other languages. It must handle two mes
sages: cmL2English and cmL2Intl. If it receives a message it cannot 
understand, the code should return a message of cmNotSupported. 

The cmL2English message tells your localization code to return an 
American English translation of a string in the specified language. The 
cmL2lntl message tells your localization code to return a translation of a 
string into the specified language from American English. 

~ Creating a 'cbnd' Resource 

The 'cbnd' optional bundle resource contains the tool's name and lists all 
the resources in this tool. The name of the tool is the name of this bundle 
resource. 

This resource also contains a lis t of all the other resources in this fil e, 
sorted by resource type and containing a local resource ID and an actual 
resource ID. The code in the connection tool can use the local IDs when 
referring to these resources. To convert between these IDs and the actua l 
IDs, the Communications Resource Manager uses this 'cbnd' resource, 
obviously simplifying the code for connection tools. 

~ Programming with the Terminal Manager 
The Terminal Manager provides a standard API to terminal-emulation 
services that is independent of which terminal is being emula ted. The 
details of emulating a particular terminal are handled by a lower level of 
code known as terminal tools, which are described in the next section. 
Since the interface provided by the Terminal Manager is independent of 



..,_ Programming with the Terminal Manager 225 

the terminal being emulated, a user should be able to easily switch from 
emulating one terminal to another. Your application should work as well 
wi th one terminal tool as another. Figures 13-5, 13-6, 13-7, and 13-8 
show the dialogs presen ted by the VT102 terminal emulation tool. This 
tool has four dialogs because of the complexity of the VT102 terminal. 

Terminal Settings 

Emulation: I UTI 02 Tool I 
[ OK J 
( Cancel J 

~ 

=I Keyboard 

' 
Terminal Mode : I ANSIIVT 1 02 I Tex t Cursor 

............................... . ...................................... ) 

121 fl 
· ·. .· @ Block 

t:l_ - '="',. I'V1 On Line •.' ·1· 
IC)J ·::: =::· 0 Underli n<> 

................ '.'.'.'.:::'.:!.=:!. ............... ~ .. ~~.~~'1 "~~.~~ .... ...1 ........................ ........................... .. 

r :! +1:·:·:·:1 +!·:·: 

......... 1 ......... 1 ... 
t t 

[8) Show Status Bar 

[8) Show Tab Ruler 

Answerback Message I._B_e_ar_R_i_v_e_rl _____ _, 

Figure 13-5. General characteristics dialog 

Terminal Settings 

Emulation: I un 02 Tool I 
[ OK D 
( Cancel J 

General 

111111 

... 

I 
Keyboard 

Width : I BO Columns 

Size : I 9 point I ' ' 
' 

Scroll Tex t 

@Jump 0 Smooth 

........................................................................... :·························· .. ··············································· 
' BO 

Characters ' 
0 Show Control Character-s l [r'h"i'~""'i·;; ... ~ .... ~·~·~·p·i·~ .... ~.'f""vr'! 
I'V1 i ! 192 tex t . ! 
IC)J Auto Wrap to Nex t Line ! jTh i 5 j 5 a samp 1 e of UT j 

[8) Insert Characters ! [.1.~.~ .... :.~.~.: . .' ........................................ .! 
··o··~·;~·~~·~ .. ~~ .. ~·~~·~ ;·l~·~;·~~·;;;~·· .. ··· i······ ·o··;~~·:~·~~··~;·~ ~·~ ··· · ......................... . 

Figure 13-6. Screen parameters dialog 



226 ..,.. Chapter 13 The Communications Toolbox 

Terminal Settings 

Emulation: I UT1 02 Tool I 
[ OK n 
( Cancel ) 

[t] 
Screen m

: ~ Numeric Keypad Generates j Holding Down Keys Will 

; - @ Numeric Sequences 

~ · ··· 0 Application Sequences i [g) Auto Repeat Keys 

IRMI.IIflt I ~~2::::::~~~~~=:+;:~;~~;::. A~ 
Character Set fO 

Figure 13-7. Keyboard dialog 

Terminal Settings 

Emulation: I UTI 02 Tool I 
[ OK , 

[ Cancel ) 

[t] ~ National Replacement Set: I US ASCII 

Screen 

Active Character Set s Temporary Character Set s 

Keyboard 
@ GO: I US ASCII G2: I US ASCII 

0 G1 : I US ASCII G3: I US ASCII 

Figure 13-8. Character set dialog 

These dialogs h andle the emula tion's general characteristics, screen 
parameters, keyboard, and character set. 

Terminal tools bear a similar relationship to the Terminal Manager that 
printer drivers have with the Print Manager; Figure 13-3 illustrates th.is 
analogy using the Connection Manager. An application calls the Print 



.,.. Programming with the Terminal Manager 227 

Manager, which performs relatively little work. The Print Manager calls 
the printer driver selected by the user to do the work of printing. In a 
similar way, an application calls the Terminal Manager, which performs 
relatively little work. The Terminal Manager calls the terminal tool 
selected by the user to do the work of emulating a terminal. 

The Terminal Manager provides a window for emulating a terminal. 
The content area of the window is divided into two parts: the terminal 
emulation region and the cache region. The terminal emulation region is 
where data is displayed emula ting a particular terminal. Both text and 
graphics terminals can be emulated. Your application and the terminal 
tool use a TermDataBlock call to communicate the contents of the termi
nal emulation region to each other. For text terminals, a TermDataBlock 
call describes a line of text; for graphics terminals, a TermDataBlock call 
describes a picture. 

The cache region of a terminal emulation window provides an area you 
can use to display data that has scrolled off the top of the terminal emula
tion region. The cache region is optional. If you want it, though, you have 
to write the code. 

You can emulate more than one terminal in an application . You can use 
the same or more than one terminal tool to accomplish this. Also, because 
of the architecture of the Communications Toolbox, more than one appli
cation can use the same terminal tool at the same time . 

..,. The Terminal Record 

Applications call the routines of the Terminal Manager passing a terminal 
record. This record, which is independent of the emulation, contains all 
the details required to support the emula tion, such as a reference con
stant, a long word for user data, the boundaries of the terminal emulation 
area in its window, and the current selection in the window. Also, the 
terminal record contains a pointer to the five procedures that can describe 
the connection environment, handle mouse clicks, transmit data, perform 
a break operation, and collect lines that scroll off the top of the terminal 
emulation window. In addition, this record provides pointers to data 
belonging to the terminal tool: configuration records and an area to store 
its private data. 

The terminal record is private to the Termina l Manager; you can 
directly modify only the configuration record. The Terminal Manager pro
vides a set of routines for modifying some of the contents of the record. 

An application can use more than one terminal emulation a t a time. 
Your application will need to allocate a terminal record for each terminal 
emulation that your application uses. 



228 ..,. Chapter 13 The Communications Toolbox 

..,.. Using the Terminal Manager Routines 

Call InitTM to initialize the Temrinal Manager. You should have already 
called InitCRM to initialize the Comm unications Resource Manager, and 
InitCTBUtilities to initialize the Communications Toolbox Utilities. You 
must initialize these two man agers before using the Terminal Manager, 
whether you will use any of the routines in the latter two managers or not. 

To present the user with the standard dialog box for choosing a termi
nal tool, call the TMChoose routine. This dialog searches for all terminal 
tools in the Communications Folder in the System Folder, and the user 
selects which tool to use from a pop-up menu on this dialog. The user can 
also configure the tool from this dialog box, such as what the cursor looks 
like, whether the terminal in online or offline, and so on, depending on 
the terminal tool. 

You can also create a custom dialog instead of using the standard dia
log. Six routines provided as a part of the Terminal Manager simplify this 
code to a certain extent. There is one other method of selecting a tool: 
your application can also select a terminal tool by using a scripting lan
guage. In this case, the user wouldn't see a dialog box. 

To interface with a scripting language, use the two routines provided as 
part of the Terminal Manager that simplify this process: TMGetConfig 
and TMSetConfig. These routines get a configuration string from and set 
the configu ration string for a terminal tool. Remember that these calls are 
being processed by the terminal tool; the Terminal Manager is doing 
nothing more than providing an API to the tool with these calls . 

..,.. Preparing to Emulate a Terminal 

Use the TMNew routine to create a new terminal record. When making 
this call, pass the address of the procedures in your code that will send 
out data, collect data scrolling off the top of the terminal emulation win
dow, perform a break operation, and handle mouse clicks. You'll also 
need to pass a pointer to a procedure that the terminal tool can call to find 
out what connection environment it's running in, such as how wide the 
data channel is in bits. Last, you'll need to pass the proclD of the terminal 
tool. Get this value by calling TMGetProciD. You need to specify the 
name of the terminal tool to get its prociD; these IDs are assigned dynam
ically by the Terminal Manager. 

As part of processing the TMNew call, the Terminal Manager calls 
TMDefault to fill in the configuration records in the terminal record. The 
Terminal Manager also loads the main procedure of the terminal tool (see 
the next section for details on temrinal tools). 



~ Programming with the Terminal Manager 229 

Call the TMDefault routine to ask the current terminal tool to (allocate 
and) set the terminal record to default values. Use the TMValidate rou
tine to verify that the terminal record is internally consistent . 

..,. Emulating a Terminal 

Your application should call TMidle every time it passes through the 
main event loop. This routine 'Arill give the tool handling the specified 
terminal tool some time to perform its idle-loop tasks. Terminal tools 
cause the cursor to blink and perform searches during this time. 

Use the TMStream routine to pass the terminal tool da ta tha t have 
come in from the other end of the connection. Call the TMPaint routine 
to draw data in the specified TermDataBlock data structure into the speci
fied rectangle in a terminal emulation window. 

To get a line of da ta from the terminal emulation buffer, use the 
TMGetLine routine. You pass a TermDataBlock data structure that the 
terminal tool fills in. You must allocate this data structure and deallocate 
when you 're done with it. 

Call TMScroll to scroll the terminal emulation region horizontally 
and/or vertically. Use TMResize to resize the terminal emulation region 
to the specified coordinates. You use TMClear to clear the terminal emu
lation region and put the cursor in its h ome position. This call does no t 
transmit any characters. 

To get the current position of the cursor, call TMGetCursor. You can 
request the cursor position either in terms of rows and columns (for text 
terminal emulation) or in terms of pixels (for graphics terminal emula
tion). 

Call TMReset to reset the terminal emulation window. This causes the 
terminal tool to reset its sta te, and the configuration record is reset to the 
last saved state. 

You can ask the Terminal Manager to search for a string of up to 255 
bytes in the terminal emulation by calling TMAddSearch. You can spec
ify whether the search should be case-sensitive and whether to search for 
diacri tical marks. You can also request the type of selection: for text, you 
can request a standard text selection or a boxlike selection. The Terminal 
Man ager adds this search to its list, and calls your callback routine when it 
finds the specified sh·ing. Use the TMRemoveSearch routine to remove a 
specific search request or the TMClearSearch routine to remove all out
standing search requests. 

Use the TMGetSelect and TMSetSelection routines to get the current 
selection in the terminal emulation window and set the current selection. 

Call TMDispose when you' re completely finished with the terminal 



230 ..,. Chapter 13 The Communications Toolbox 

emulation . This routine deallocates the terminal record and the data 
structures to which it refers . 

..,_ Working with Special Keys 

Some terminals have keys that perform special functions, such as PFl and 
Home. Call TMCountTermKeys to find out how many special keys the 
current terminal tool supports. You can then call TMGetlndTermKey to 
get the name of the special key speci fied by an index. 

Call TMDoTermKey when you are emulating a special key, passing 
the name of the special key. The terminal tool will emulate the sequence 
of bytes that key produces . 

..,_ Handling Events with the Terminal Manager Routines 

Use the TMKey routine to process key-down or autokey events. This 
routine passes control to the terminal tool, which translates the character 
into a sequence of one or more bytes to be sent out. This is one of the 
routines you w ill use most often. 

Call the TMClick routine to process a mouse-down event. This routine 
calls your click-handling routine, the address of which you supplied in 
the terminal record. 

To force a part or all of the terminal emulation region to be updated, use 
the TMUpdate routine. 

Use the TMEvent routine to tell the terminal tool that the event your 
application just received happened in a window owned by the tool. The 
tool should therefore process the event. 

Call the TMMenu routine to tell the terminal tool that the menu event 
your application just received happened in a menu owned by the tool. 
The tool should therefore process the event. 

Use the TMActivate routine to tell the terminal tool that your applica
tion has received an activate or deactivate event. The tool may need to do 
something when this happens, such as installing or removing a menu. 

To tell the terminal tool that your application has received a suspend or 
resume event, use the TMResume routine. When your application is 
going to be running in the background (or returning to the foreground), 
the tool may adjust some of its parameters . 

..,_ Other Terminal Manager Routines 

Use the TMGetTermEnvirons routine to get information on the terminal 
emulation environment. This call returns the following information from 
the terminal tool: 



..,. Writing a Terminal (Emulation) Tool 231 

• If the terminal being emulated is a text andjor graphics terminal 
• The number of rows and columns in the terminal emulation region 

• The height and width of each cell 

• The height and width of the graphics terminal emulation area 

To get the name of the specified terminal tool, call TMGetToolName. If 
you want to save the terminal tool's configura tion, you'll also need to save 
the name of the tool. 

Use the TMGetRefCon and TMSetRefCon routines to get and set the 
reference constant in the terminal record. Use the TMGetUserData and 
TMSetUserData routines to get and set the user data (it's 4 bytes, so it can 
be a handle) in the terminal record. 

Call TMGetVersion to get the 'vers' information from the terminal tool. 
This information is returned in a handle that you must dispose of when 
you' re done with it. 

.,... Internationalization and the Terminal Manager 

Use TMintlToEnglish and TMEnglishTolntl to help internationalize 
your application. These routines, which assume tha t the strings are stored 
in the tool in American English, will ask the terminal tool to translate 
configura tion s trings from and to other languages . 

...,.. Writing a Terminal (Emulation) Tool 
A terminal tool emulates a particular terminal, such as a DEC VT102. 
Terminal tools have a sh·ucture that makes them interchangeable from the 
user's (and application 's) poin t-of-view. That is, it is easy for the user to 
switch from using one terminal tool to another. Terminal tools bear a 
similar relationship to th e Terminal Manager that printer drivers have 
with the Print Manager. An application calls the appropria te manager. 
This manager usually performs rela tively little work and calls the tool or 
driver to accomplish most of the work for this call. 

Termin al tools are s tructured as a set of resources in a single file. A 
terminal tool has a basic set of five or six resources. 

• 'tdef' code resource-Implements the communications functions of 
the tool. 

• 'tva!' code resource-Validates terminal records wh en the Terminal 
Manager is called using the TMValidate call. This code also han
dles the TMDefault call. 



232 .,.. Chapter 13 The Communications Toolbox 

• 'tset' code resomce-Handles the terminal-settings dialog. 

• 'tscr' code resource- Handles the interface between a scripting lan
guage and the tool. 

• 'tloc' code resource-Translates this tool's strings between English 
and other languages. · 

• 'tbnd' bundle resource (optional)-Contains the tool's name and 
lists all the resources in this tool. 

All of the code resources ('tdef' , 'tval', 'tset', 'tscr', and 'tloc') are called by 
the Terminal Manager. The Terminal Manager passes along a message, 
which is a code telling the code resource what to do, and a set of three 
parameters. The meaning of the parameters is determined by the mes
sage. Not all parameters are used for all messages . 

The 'tva!', 'tset', 'tscr', 'tloc', and 'tbnd' resources are identical in function 
and structure to the 'cval', 'cset', 'cscr', 'cloc', and 'cbnd' resources described 
previously in this chapter, in the section on "Writing a Connection Tool." 
The prefix for the names of messages, error codes, and data structures 
associated with these resources is tm rather than em. For the details on 
creating these resources, refer to the previous section. These are not the 
only resources in a terminal tool; also needed are the resources for dialog 
boxes and dialog item lists. You'll now look at creating a 'tdef' resource. 

~ Creating a 'tdef' Resource 

A 'tdef' resource performs the primary functions of the terminal tool: emu
lating a particular type of terminal. A terminal tool might be called by the 
Terminal Manager with any of the messages listed in Table 13-2. If your 
tool does not understand the message or cannot support it, then it should 
return an error message, tmNotSupported. Note that the Terminal Man
ager's caller can be either an application or another communications tool. 

You'll now look at several of the basic messages that every terminal tool 
should support: tmLnitMsg and tmDisposeMsg, tmStreamMsg, tmKey
Msg, tmDoTermKeyMsg, and tmClickMsg. 

The tmlnitMsg message tells your code to initialize for a new terminal 
emulation session. This is the time to allocate any local memory for this 
tool, including buffers. The tmDisposeMsg message tells your code to 
deallocate any local memory that was allocated when you received the 
tmlnitMsg. The Terminal Manager handles the deallocation of the config
uration records and the terminal record. If you try to dea llocate them, 
you' ll cause a system crash. 

Use the tmStreamMsg message to send your code a buffer of incoming 



..,. Writing a Terminal (Emulation) Tool 233 

d ata th at sh ould be processed and added to th e term inal emulation 
buffe r. You'll also be passed the buffer length and som e flags that tell you 
a bout the contents of the buffer. 

Table 13-2. Messages for the 'tdef' resource o f a terminal t ool 

Message Nam e 

tmlnitMsg 

tmDisposeMsg 
tmSuspendMsg 

tmResumeMsg 
tmMenuMsg 

tmEventMsg 

tmActiva teMsg 
tmDeactivateMsg 
tmidleMsg 
tmResetMsg 

tmKeyMsg 
tmStreamMsg 

tmResizeMsg 
tmUpdateMsg 

tmCiickMsg 

tmGetSelectionMsg 

tmSetSelectionMsg 

tmScrollMsg 

tmClearMsg 

tmGetLineMsg 

Sent to tile Terminal Tool When tile Caller: 

Initializes the termina l emulation 
Closes the terminal emu lation 
Requires the tool to handle a suspend even t 
Requires the tool to handle a resume event 

Got a menu even t for a menu belonging to this 
tool 
Got a window event and this event is associated 
with this tool 

Requires the tool to h andle an activate event 
Requires the tool to handle a deactivate event 

Has idle time (time to make the cursor blink) 
Requires your tool to reset the terminal 
emulation window 
Got a key-down, key-up, or autokey event 
Has a buffer of data to be added to the terminal 
emulation buffer 
Needs to resize the terminal emulation window 
Wants the terminal emulation window updated 
Got a mouse-down event in th e terminal 
emulation window 

Wants the selection in the terminal emulation 
window returned (for a cut, copy, or paste 
opera tion) 
Tells you what the current selection is (for a cut, 
copy, or paste operation) 
Wants the terminal emulation window to scroll 
horizontally or vertically 

Wants the terminal emulation window cleared 
(and all buffers cleared) 
Wants the data, character attributes, and line 
attributes for one or more lines of text in the 
terminal emulation window 



234 ., Chapter 13 The Communications Toolbox 

Table 13-2. Messages for the 'tdef' resource (continued) 

Message Name 
tmPaintMsg 

tmCursorMsg 
tmGetEnvironsMsg 

tmDoTermKeyMsg 
tmCountTermKeysMsg 

tmGetlndTermKeysMsg 

Sent to tlu Terminal Tool Wh en the Caller: 
Wants to replace one or more lines of text in the 
terminal emulation window and have them 
displayed 
Wants the location of the cursor 
Wants the current environment of the terminal 
emulation window 
Pressed a special key (such as PFl or Home) 
Wants the number of special keys supported by 
this tool 
Wants the name of the specified special key 

You use the tmKeyMsg message to pass your code the key-down, key
up, or autokey event that the application received. You aren ' t passed the 
event record, but rather the ch aracter code, key code, and modifier (such 
as Shift or Option). Your code should process this keystroke-it might 
have to remap the character, h·ansmit the character, and echo the charac
ter to the screen . 

The tmDoTermKeyMsg message passes your code a string containing 
the name of a special key (such as PFl or Home) that was pressed. Your 
code needs to perform the functions associated with tha t key. Note that 
the application previously got the name of this key from your tool using 
the tmGetlndTermKeyMsg message. 

If you receive a tmClickMsg message, the application has received a 
mouse-down event in the terminal emulation window. Your tool must 
support placing and dragging the cursor in this window, and it must also 
call the application's click-loop procedure . 

...,. Programming with the File Transfer Manager 
The File Transfer Manager provides a standard API to file transfer services 
that is independent of file transfer protocols, which are implemented in 
file transfer tools. These tools are described in the following section . File 
transfer tools bear a similar rela tionship to the File Transfer Manager that 
printer drivers have with the Print Manager (Figure 13-3 illustrates this 
analogy with the Connection Manager). An application calls the Print 
Manager, which performs relatively little work and then calls the printer 
driver selected by the user to do the work of printing. In a similar way, an 
application calls the File Transfer Manager, which performs relatively lit-



,... Programming with the File Transfer Manager 235 

tie work. The File Transfer Manager calls the fi le transfer tool selected by 
the user to transfer files. Figure 13-9 sh ows the dialog presented by the 
XMO DEM fil e transfer tool. 

File Transfer Settings 

Protocol : I HMO OEM Tool I 

Method : MacBinary 

Transfers any Macintosh file . 

Timing Options 

Timeout After jU.Mj Seconds 
1 

Retry Up To~Times 

t OK n 
( Cancel ) 

Transfer Options: Standard I 

Received File Opt ions 

181 Use Filename Sent by Remote Computer 

0 Enable Auto Receiv e 

Fi gure 13-9. Dialog presented by the XMODEM file transfer tool 

You can transfer files over more than one connection at a time using the 
File Transfer Manager. You can use the same or more than one file transfer 
tool to accomplish this. Also, because of the architecture of the Commu
nications Toolbox, more than one application can use the same tool at the 
same time . 

..,.. The File Transfe r Record 

Applica tions pass da ta to the routines of the File Transfer Manager using a 
protocol-independent file transfer record, which contains a ll the de tails 
required to transfer a fi le, such as the direction of the transfer (to, from, or 
full duplex), pointers to your procedures to read from and write to disk 
files, and pointers to inputjoutput buffers. Also, this record contains con
figuration records for the selected file transfer tool to s tore its private data. 
The file transfer record is private to the File Transfer Manager, which 
provides a set of routines for modifying the contents of the record. 

If you need to transfer more than one file over the same connection, 



236 ...,. Chapter 13 The Communications Toolbox 

you have to do some more work. You need to create one fi le transfer 
record for each fil e to be transferred; when one file has been transferred, 
you move to the next. Your code will have to ensure that the connection 
doesn't have to be restarted for each file. The other way to handle this is 
to write a file transfer tool that can present the user with a dialog box 
allowing selection of more than one file. The file transfer tools provided 
by Apple do not have this capability . 

.,.. Using the File Transfer Manager Routines 

Call InitFT to initialize the File Transfer Manager. You should have 
already called InitCRM to initialize the Communications Resource Man
ager and InitCTBUtilities to initialize the Communications Toolbox Utili
ties. You must initialize these two managers before using the File Transfer 
Manager, whether you use any of the routines in the la tter two managers 
or not. 

Call the FTChoose routine to present the user with the standard dialog 
box for choosing a file transfer tool. This dialog searches for all file trans
fer tools in the Communications Folder in the System Folder, and the user 
selects which tool to use from a pop-up menu on this dialog. The user can 
also configure the tool from this dialog box. 

To crea te a custom dialog instead of using the standard dialog, you can 
use the six routines provided as a part of the File Transfer Manager, which 
simplify this code to a certain extent. There is one other method of select
ing a tool: your applica tion can also select a file transfer tool by using a 
scripting language. In this case, the user wouldn' t see a dialog box. 

To interface with a scripting language, use the two routines provided as 
part of the Fil e Transfer Manager that simplify this process: FTGetConfig 
and FTSetConfig. These routines get a configuration string from and set 
the configuration string for a file transfer tool. Remember that these calls 
are being processed by the file transfer tool- the File Transfer Manager 
does nothing more than provide an API to the tool with these calls . 

.,.. Preparing to Transfer a File 

Use the FTNew routine to create a new file transfer record to prepare to 
transfer a file. When making this call, pass the address of the four procedures 
in your code that will send data, receive data, read data from a file, and write 
data to a file. The routines that send and receive data can use the Connection 
Manager to perform their function. You also need to pass a pointer to a 
procedure that the file transfer tool can call to find out what environment it's 
running in, such as how wide the data channel is in bits. Last, you need to 



.,.. Programming with the File Transfer Manager 237 

pass the prociD of the file transfer tool. Get this value by calling FTGet
ProciD. You need to specify the name of the file transfer tool to get its 
prociD. These IDs are assigned dynamically by the File Transfer Manager. 

As part of processing the FTN ew call, the File Transfer Manager calls 
FIDefault to fill in the configuration records in the file transfer record. 
The File Transfer Manager also loads in the main procedure of the file 
transfer tool (see the next section for details on file transfer tools). 

Use the FTDefault routine to ask the current file transfer tool to (allo
cate and) set the file transfer record to default values. Use the FTValidate 
routine to verify that the file transfer record is internally consistent. 

...,. Performing the File Transfer 

Use the FTStart routine to begin the process of transferring a file. This 
routine opens the fil e that will be transferred. You can optionally cause a 
status dialog to be displayed. Call the FTExec routine each time your code 
passes through the main loop. This routine performs the basic task of the 
File Transfer Manager-transferring the file. Each time you call FTExec, it 
processes some of the file. When the file has been successfully transferred , 
the file transfer tool closes the file it was working on and deallocates any 
memory that it allocated. 

If you need to stop the file transfer process, call FTAbort. This routine 
tells the other end of the connection that you are aborting the transfer. 

Call FTDispose when you're all done with the file transfer process. 
This routine deallocates the file transfer record and the data structures to 
which it refers . 

...,. Handling Events with the File Transfer Manager Routines 

Use the FTEvent routine to tell the file transfer tool that the event your 
application just received happened in a window owned by the tool. The 
tool should therefore process the event. 

Call the FTMenu routine to tell the fi le transfer tool that the menu 
event your application just received happened in a menu owned by the 
tool. The tool should therefore process the event. 

Use the FTActivate routine to tell the file transfer tool that your appli
cation has received an activate or deactivate event. The tool may need to 
do something when this happens, such as installing or removing a menu. 

To tell the file transfer tool that your application has received a suspend 
or resume event, call the FTResume routine. When your application is 
going to be running in the background (or returning to the foreground), 
the tool may adjust some of its parameters. 



238 ..,. Chapter 13 The Communications Toolbox 

..,. Other File Transfer Manager Routines 

Call FTGetToolName to get the name of the specified file transfer tool. If 
you want to save the file transfer tool's configuration, you also need to 
save the name of the tool. 

Use the FTGetRefCon and FTSetRefCon routines to get and set the 
reference constant in the file transfer record. Use the FTGetUserData and 
FTSetUserData routines to get and set the user data (it's 4 bytes, so it can 
be a handle) in the file transfer record. 

To get the 'vers' information from the file transfer tool, call FTGetVer
sion. This information is returned in a handle, which you must dispose of 
when you're done with it. 

..,. Internationalization and the File Transfer Manager 

To help internationalize your application, use FTintlToEnglish and 
FTEnglishTolntl, which ask the file transfer tool to translate configura
tion strings from and to other languages. These routines assume that the 
strings are stored in the tool in American English. 

IJJ. Writing a File Transfer Tool 
A fil e transfer tool provides a file transfer capability using a particular file 
transfer protocol, such as XModem or Kermit. File transfer tools have a 
structure that makes them interchangeable from the user's (and applica
tion's) point of view. That is, a user can easily switch from one file transfer 
tool to another by selecting another file transfer tool. This can be done as 
easily as choosing another printer. 

File transfer tools are structured as a set of resources in a single file. A 
file transfer tool has a basic set of five or six resources. 

• 'fdef' code resource-Implements the primary fi le transfer functions 
of the tool. 

• 'fval' code resource-Validates file transfer records when the File 
Transfer Manager is called using the FMValidate call. This code 
also handles the FMDefault call. 

• 'fset' code resource-Handles the fi le transfer settings dialog. 
• 'fscr' code resource-Handles the interface between a scripting lan

guage and the tool. 
• 'floc' code resource-Translates this tool's strings between English 

and other languages. 
• 'fbnd' bundle resource (optional)-Contains the tool's name and 

lists all the resources in this tool. 



..,. Writing a File Transfer Tool 239 

All of the code resources ('fdef', 'fval', 'fset', 'fscr', and 'floc') are called by 
the File Transfer Manager. The File Transfer Manager passes along a mes
sage, which is a code telling the code resource what to do, and a set of 
three parameters. The meaning of the parameters is determined by the 
message, and not all parameters are used for a ll messages. 

The 'fval', 'fset', 'fscr', 'floc', and 'fbnd' resources are identical in function 
and structure to the 'cval', 'cset', 'cscr', 'd oc', and 'cbnd' resources described 
previously in this chapter, in the section entitled "Writing a Connection 
Tool. " The prefix for the names of messages, error codes, and data struc
tures associated with these resources is fm rather than em. For the details 
on creating these resources, refer to the previous section. These are not 
the only resources that are in a file transfer tool; also needed are resources 
for dialog boxes and dialog item lists managed by this tool. Let's now look 
a t the details of creating an 'fdef' resource. 

~ Creating an 'fdef' Resource 

An 'fdef' resource performs the primary functions of the file transfer tool: 
transferring a file to or from this machine using a particular protocol. A 
terminal tool might be called by the File Transfer Manager with any of the 
messages listed in Table 13-3. If your tool does not understand the mes
sage or cannot support it, then it should return the error message fmNot
Supported. Note tha t the File Transfer Manager's caller could be either an 
applica tion or another communications tool. 

Table 13-3. Messages fo r the 'fdef' resource of a file transfer tool 

Message Name 
fmlnitMsg 
fmDisposeMsg 
fmSuspendMsg 
fmResumeMsg 
fmMenuMsg 
fmEventMsg 

fmActi va teMsg 
fmDeactivateMsg 
fmAbortMsg 
fmS tartMsg 
fmExecMsg 

Se11t to tlze File Transfer Too l When the Caller: 
Initializes the file transfer 
Closes the file transfer 
Requires the tool to handle a suspend event 
Requires the tool to handle a resume event 
Got a menu event for a menu belonging to this tool 
Got a window event and this event is associated with 
this tool 
Requires the tool to handle an activate event 
Requires the tool to handle a deactivate event 
Wants to abort a file transfer 
Wa nts to s tart transferring a file 
Wants to provide time to transfer the file 



240 IJJI> Chapter 13 The Communications Toolbox 

You'll now look at several of the basic messages every terminal tool 
should support: fmlnitMsg and fmDisposeMsg, fmStartMsg, fmExecMsg, 
and fmAbortMsg. 

The fmlnitMsg message tells your code to initialize for a new file trans
fer session. This is the time to a llocate any local memory for this tool, 
including buffers. The fmDisposeMsg message tells your code to deallo
cate any local memory that was a llocated when you received the 
fmlnitMsg. The File Transfer Manager handles the deallocation o f the 
configuration records and the fil e transfer record. If you try to dealloca te 
them, you' ll cause a system crash. 

The fmStartMsg message tells your code to begin transferring a file. 
Your code should open the file to be transferred, prepare the connection, 
and draw a status dialog. 

The fmExecMsg message gives this tool some time to transfer the fi le. 
This message is received repeatedly until the transfer has been completed. 
When it completes, close all files and remove the s tatus dialog. 

The fm AbortMsg message tells your tool to halt the file transfer. You 
also need to close all files and remove the sta tus dialog . 

..,. Programming with the Communications 
Resource Manager 
The Communications Resource Manager provides routines for handling 
resources and devices. These routines make your job easier by arbitra ting 
between applications using the Communications Toolbox. 

Ca ll the InitCRM routine to initialize the Communications Resource 
Manager. You must do this before making any other call to any of the 
othe r managers in the Communications Toolbox. Also, you must make 
this call after making all the s tandard toolbox initialization calls. 

Communica tions devices a re managed by means of a queue. This 
queue is maintained by the Communications Resource Manager. Each 
entry in the queue describes a communica tions device, including the 
device type, the device ID, attributes, and sta tus. 

Use the CRMinstall call to ins tall a device into th e queue. You need to 
fill out a record for the queue before calling this routine. TypicaJJy, a driver 
or INIT would do this rath er than an applica tion. This is an important 
call, because the other managers in the Communications Toolbox can 
only use devices that have been registered with the Communications 
Resource Manager. Each Macintosh has two built-in serial ports, so at a 
minimum there should be two records in the queue. Use the CRM
Remove call to remove a device from the queue. 



~ Programming with the Communications Toolbox Utilities 241 

Use the CRMSearch routine to search tlu·ough the queue for a device of 
the specified type and with an ID greater than the specified ID. You might 
use this routine in an application to find a specialized type of communica
tions device, such as a serial port that can support high transmission rates. 

The Communications Resource Manager provides a series of routines 
to get and release resources. These routines provide one additional service 
beyond the Resource Manager routines that they call: the Communica
tions Resource Manager maintains a use count on each resource. Each 
time a resource is obtained, its use count is incremented. Each time a 
resource is released through a Communications Resource Manager rou
tine, its use count is decremented. Only when the use count reaches zero 
is the resource really released. At this point, the Communications 
Resource Manager calls the equivalent Resource Manager routine to 
accomplish this. Thus, you don't have to worry about another application 
using the same communica tions resources that you do. The Communica
tions Resource Manager handles all the bookkeeping for you. 

The Communications Resource Manager provides the following rou
tines: CRMGetResource, CRMGetlResource, CRMGetlndResource, 
CRMGetllndResource, CRMGetNamedResource, CRMGetlNamed
Resource, and CRMReleaseResource. Each of these routines behaves 
like the Resource Manager routine it is named after, except that the Com
munications Resource Manager automatically maintains a use count on 
the resource. 

Use the CRMGetlndex routine to find out what the usage count is for a 
particular resource. Use the CRMGetlndToolName routine to find out 
the name of a particular communications tool. Last, use the CRMRealTo
LocaliD and CRMLocalToRealiD routines to map between physical 
resource lOs (that is, the resource IDs used in the communications tool 
file) and local IDs (that is, the IDs for the resources in memory) . 

.,.. Programming with the Communications 
Toolbox Utilities 
Initialize the Communications Toolbox Utilities after initializing the Com
munications Resource Manager by calling InitCTBUtilities. 

The NewControl call provides you with a pop-up control procedure 
(CDEF), which is part of the Communica tions Toolbox. You can use this 
procedure to give users control over baud rate, parity, and other options 
when writing terminal, file transfer, or connection tools. You can also use 
this CDEF in other parts of your application; you aren' t restricted to using 
it just for communications tools. 



242 .,. Chapter 13 The Communications Toolbox 

Use th e AppendDITL, ShortenDITL, and CountDITL calls to 
append, remove, or count dialog items to an existing dialog box. You can 
use these routines on any dialog box, not just those associated with the 
Communications Toolbox. 

In fact, s ta rting with System 7, these routines now belong to the Dialog 
Manager. Before using any of these three new routines, verify that they 
are available by calling Gestalt with a selector of gestaltDITLExtAttr. This 
call will retill'n the attributes of the Dialog Manager extensions. At the 
release of System 7, the only attribute returned is that these three routines 
are available or not available. 

Use the NuLookup routine to provide a dialog box with a scrollable list 
of AppleTalk en tities for yoW' users. Thjs djalog is similar to that pre
sented by the Chooser when there are zones on the current network. In 
this case, the user can scroll th rough a list of zones and then th rough a list 
of entities in that zone. 

You can specify a list of one or more types of entities to be displayed. 
The code for the dialog box makes a call using the Name Binding Protocol 
to find entities of those types. You can optionally supply two filter proce
dures: One protocol can filter out object, type, and zone tuples from the 
Hst of entities to be displayed; the other can filter out zones from the 
djalog's lis t of zones. When the routine returns, you're given a value spec
ifying whether the user selected an object. If the user did select an object, 
then you 're also given its name and network address . 

By the Way ..,. j A tuple is an ordered list of n elements. 

If you need even more control over the appearance of the dialog box 
displayin g the network entities, use the NuPLookup routine. You must 
pass this routine a dia log ID, which must have a set of dialog items corre
sponding to, but not necessarily the same as, the standard dialog pre
sented by the NuLookup routine. In add ition to changing the appearance 
of these items, you can add other items to the dialog box. 

~ Conclusion 
In this chapter, you've looked at the Communications Toolbox. This tool
box consists of five managers: the Connection Manager, the Terminal Man
ager, the File Transfer Manager, the Communications Resource Manager, 
and the Communications Toolbox UtiHties. These managers call communi
cations tools: connection tools, terminal tools, and file transfer tools. 



Get Info IJI> 

..,. Conclusion 243 

Collectively, these managers make the job of adding communications 
and networking to an application much easier than it would be if you had 
to do it from scratch. Users find that the Communications Toolbox has 
also made their lives easier by providing standard interfaces for setting up 
and using communications links. 

For more information on the Communications Toolbox, don' t look 
in Inside Macintosh-it's not there. Instead, the toolbox is 
described in a set of documents available from APDA: the Macin
tosh Communications Toolbox Reference, the Macintosh Communica
tions Toolbox Source Code Examples, and the Communications Tools 
Basic Connectivihj Set. The first manual details how to call routines 
in the Toolbox, how to call communications tools from applica
tions, and how to write communications tools. The second publica
tion provides several examples in the form of source code. The 
third publication documents the basic set of communications tools, 
including Teletype, VT102, and VT320 terminal emulators; serial 
and modem connection tools; and text and XMODEM file transfer 
tools. 



14 ~ AppleTalk Phase II 
and AppleShare 

.,.. Introduction 
AppleTalk has provided a simple, easy-to-install local area network that 
has been built into every Macintosh ever shipped. At first, AppleTalk was 
used primarily as a way of sharing a relatively expensive LaserWriter. 
Gradually, though, other peripherals were developed to be shared over 
AppleTalk. Shareable devices available today include gateways to other 
networks, modems, serial ports, and file servers. Multiuser applications 
such as databases are also available. In this chapter, you'll first briefly 
review the AppleTalk protocol architecture and the drivers that imple
ment them. 

AppleTalk Phase II, introduced in 1989, enhanced the AppleTalk archi
tecture by improving and adding protocols and reducing some of the limi
tations of the earlier implementations. AppleTalk Phase II is shipped as 
part of System 7. This is the second topic that you'll explore in this chapter. 

The third topic of this chapter will be a new protocol, AppleTalk Data 
Stream Protocol (ADSP), which was introduced prior to System 7 and 
Apple Talk Phase II. ADSP, a standard protocol provided as part of System 
7, is the first AppleTalk protocol that application programmers should 
think of using. 

The final topic of this chapter is File Sharing, a personal version of the 
AppleShare file server software. It provides, for the first time, a standard 
file server technology as part of the operating system. Previously, applica
tion developers could not assume the existence of a standard file server, 
so developers of multiuser software had to ask their users to purchase file 

245 



246 IJJ> Chapter 14 Applelalk Phase II and AppleShare 

server software (and sometimes hardware). There was (and still is) an 
alternative: developing application-specific network protocols. This is not 
an easy task (if it's done correctly), and so few developers ever went this 
route. 

File Sharing allows application developers to assume that a file server is 
readily available from all Macintosh computers. This will encourage the 
development and use of multiuser software . 

..,. AppleTalk Protocols and Drivers 

The AppleTalk protocol suite is illustrated in Figure 14-1 . Refer to Inside 
AppleTalk for information about these protocols (see the "Get Info" sec
tion at the end of this chapter). Most of these protocols are of interest 
primarily to programmers developing low-level network software, such 
as the code in a network bridge. Notice that the protocols are layered. 
One important implication of this is that a higher-level protocol assumes 
the existence of services provided by the lower-level protocols under it. 

AppleTalk Filing 
Protocol 

(AFP) 

Zone Information Apple Talk Apple Talk Data 
Protocol Session Protocol Stream Protocol 

(ZIP) (ASP) (ADSP) 

!~ 
Routing Table Apple Talk Name Binding AppleTalk Echo 

Maintenance Protocol Transaction Protocol Protocol Protocol 
(RTMP) (ATP) (NBP) (AEP) 

+ , J i , 
Datagram Delivery Protocol (DDP) I 

+ 
LocaiTalk Link EtherTalk Link TokenTalk Link 

Other link access Access Protocol Access Protocol Access Protocol 
(LLAP) (ELAP) (ELAP) 

protocols 

Figure 14-1. The AppleTalk protocol suite 



By the Way ""I 

Note"" 

lil" AppleTalk Protocols and Drivers 247 

A few words on terminology: AppleTalk is the name of the proto
col architecture. It used to be the name of the networking imple
mentation that is built into every Macintosh computer; that 
implementation of the protocol is now known as LocalTalk. This 
change in terminology was made when EtherTalk was introduced. 
EtherTalk is an implementation of the upper layers of the Apple
Talk protocol suite on top of Ethernet. More recently, Apple has 
introduced TokenTalk, which is an implementation of the upper 
layers of the AppleTalk protocol suite on top of Token Ring. Both 
Ethernet and Token Ring networks are commonly used to connect 
workstations, minicomputers, and mainframes. 

The protocols are implemented in several different drivers that make 
up the AppleTalk software, described in Table 14-1. The first four drivers 
are provided as part of the standard system in System 7. The Ethernet 
driver is provided with Apple's Ethernet card. 

Table 14-l. AppleTalk drivers and protocols 

Driver Name 
.MPP 
.ATP 
.XPP 
.DSP 
.ENET 

Protocols Implemented 
LLAP, DDP, NBP, AEP, and RTMP stub 
ATP 
ASP and workstation portions of ZIP and AFP 
ADSP 
Ethernet driver 

The one major omission in the AppleTalk architecture is network 
management protocols. These protocols, which would be imple
mented in all network-related hardware and software (but not in 
application sofhvare), would make it much easier to locate and iso
late network problems. These protocols would also enable devel
opers to tune a nehvork for optimal performance. Apple has 
indicated that these protocols are under development. 

At the 1990 Worldwide Developer's Conference, Apple announced 
that it would license various portions of its AppleTalk code and protocol 
testing tools for porting to other platforms. Some components can be 
licensed in object code only; others can be licensed as either source code 



248 .,. Chapter 14 AppleTalk Phase II and AppleShare 

or object code. Apple did this for several reasons. First, it will encourage 
more Apple Talk products to be developed because implementing network 
protocols is a difficult task, and licensing existing code eliminates most of 
that work. Second, it means that products developed using this licensed 
code will be more compatible with existing AppleTalk products than 
products developed without this code . 

.,. Protocols of Interest to Application Programmers 

Three protocols of interest to application developers that can be used as a 
foundation for building multiuser cooperative applications are AppleTalk 
Transaction Protocol (ATP), AppleTalk Session Protocol (ASP), and 
AppleTalk Data Stream Protocol (ADSP). 

ATP, a lower-level protocol than the other two protocols discussed 
here, is useful for sending small amounts of data from one socket to 
another, which in practice usually means from one machine to another. 
Because ATP does not provide any support for sessions, there is little 
overhead to send a small amount of data, but it is too cumbersome for 
handling large amounts of data or for exchanging many packets of data. 

ASP is a protocol designed to support clients and servers . One end of 
the ASP protocol is for clients of a service, and the other end is for the 
providers of that service. The AppleTalk Filing Protocol (AFP) is built on 
top of ASP. Only the client portion of ASP is provided as part of the 
standard AppleTalk software shipped with the Macintosh system. 

ADSP becomes a standard protocol starting with System 7, although it 
was available previously from APDA. ADSP provides a protocol for com
municating between two equal entities (known as a peer-to-peer proto
col). You can also use ADSP to implement clients and servers. Unless you 
have good reasons for using either of the previous protocols, ADSP is the 
protocol of choice. This protocol is discussed later in this chapter . 

...,. AppleTalk Phase II 

AppleTalk Phase II brought the first substantial revision in the architec
ture of the AppleTalk protocol suite and in Apple's implementations of it. 
In this section, you'll first look at a summary of the changes of primary 
interest to application developers. Look in the "Get Info" section at the 
end of this chapter for references to complete documentation on the 
AppleTalk architecture. 

The goals of AppleTalk Phase II are to allow AppleTalk networks to do 
the following: 



~ AppleTalk Phase II 249 

• Support more than 254 nodes per network 

• Provide better support for internets (a group of connected networks) 

• Remain compatible with current AppleTalk applications and yet 
provide extended capabilities for future products 

• Require no changes to nonrouting LocalTalk nodes 

Upgrading a network to Phase II will not affect machines using Local
Talk. On the other hand, machines with EtherTalk cards (for use on 
Ethernet networks) and TokenTalk cards (for use with Token Ring net
works) will be affected much more . 

..,. AppleTalk Phase II Features for Application Developers 

AppleTalk Phase II has brought substantial changes to the AppleTalk pro
tocol suite and to Apple's implementations of it. Many of the features 
introduced in Phase II are of interest only to hardware and system soft
ware developers. For the most part, these changes will not be directly 
visible either to application programmers or to users. For example, the 
Routing Table Maintenance Protocol now uses a technique known as split 
horizon, which reduces the size of broadcasts when nodes using this pro
tocol exchange their network maps. See the references listed at the end of 
this chapter for more information. 

Phase II includes the following features of interest to application devel
opers: 

• Improvements to the AppleTalk Transaction Protocol (ATP), v/hich 
provide for several values for the release timer and a call to cancel 
all pending asynchronous calls for a particular socket. 

• Improvements to the Zone Information Protocol (ZIP), which now 
permits a single physical network to contain several zones. Several 
calls have been added to make it easier for applications to obtain 
zone information. 

• An AppleTalk Transition Queue has been added to the .MPP driver 
to arbitrate between applications using the AppleTalk drivers. 

• A new call to the .MPP returns network status information about 
the current node. 

• Another wildcard character has been added for use in requesting 
names using the Name Binding Protocol (NBP). 

You'll look at each of these new features in turn. 



250 IJJi. Chapter 14 AppleTalk Phase II and AppleShare 

...,. Improvements in the AppleTalk Transaction Protocol 

One call has been added to support the ATP, and one call has been 
enhanced. 

The ATPKillAIIGetReq call cancels all pending asynchronous calls 
made through the ATPGetRequest call for the specified socket. This call 
does not close the specified socket. 

The PSendResponse call now supports five different values for the 
timeout value for exactly-once transactions. Previously, the timeout inter
val was always 30 seconds in this case. With Phase II, the additional 
intervals of 1, 2, 4, and 8 minutes are supported. These longer values will 
help when applications are running on large internets . 

...,. Improvements to the Zone Information Protocol 

One of the most important changes to the Zone Information Protocol is 
that a single physical network (except LocalTalk networks) can now con
tain more than one zone. Such a network is called an extended network. 
This means the limit of 254 nodes per network (except on LocalTalk net
works) becomes approximately 16 million. 

Before Phase II, you'd have to use ATP to query the routers on your 
internet to obtain a list of zones. Three new routines in the .XPP driver 
make it easier to get zone information. All three calls use the new 
xCallParam parameter block, which is described in detail in the Apple
Talk Manager chapter of Inside Macintosh, Volume VI. You must fill out 
parts of the parameter block before making any of the three calls, and the 
parameter block is returned with the requested information. 

Use the GetMyZone call to find the name of the zone in which the 
current node resides. Use the GetLocalZones call to get a list of all the 
zone names on the local network. This list will always have only one 
entry if the local network is LocalTalk. Use the GetZoneList call to get a 
complete list of all the zones on the internet. 

...,. The AppleTalk Transition Queue 

More than one application can use the AppleTalk drivers concurrently. If 
one application closes the .MPP driver while another application is using 
it, the second application would have problems dealing with it. The 
AppleTalk Transition Queue was added in Phase II to arbitrate between 
applications. 

The AppleTalk Transition Queue is managed by the LAP (Link Access 
Protocol) Manager, a low-level manager that is rarely, if ever, used by 



IJio AppleTalk Phase II 251 

applications. The queue is handled by this manager because, unlike the 
drivers, the LAP Manager is always running. 

Opening the .MPP driver is unlikely to affect other applications that are 
already using the driver. When a request is made to close the .MPP driver, 
the system walks through the queue and checks with each application 
listed in the queue to find any objections to closing the driver. Anyone can 
object at this time. 

If there are no objections to closing the driver, then the system closes 
the driver. If there are any objections, the system displays the name of the 
application that wants to continue using the driver. The user can choose 
to force the driver to close, and if this happens, the system walks through 
the queue and tells each application to shut down any AppleTalk connec
tions. No objections are allowed at this time . 

..,. Using the AppleTalk Transition Queue 

Use the LAPAddATQ call to add an entry to the AppleTalk Transition 
Queue. The AppleTalk Manager will call the routine whose address is in 
the entry when any software has done one of the following: 

• Open the .MPP driver 

• Close the .MPP driver 

• Call the PATalkClosePrep function 

• Deny another routine in the queue permission to close AppleTalk 

• Call ATEvent or ATPreFlightEvent routine 

These five situations are called AppleTalk transitions. 
Use the LAPRmvATQ call to remove an entry from the AppleTalk 

Transition Queue. 
Generally applications should not close the .MPP driver since another 

application may be using it. However the system may, at certain times, 
want to close this driver. It calls the PATalkClosePrep routine in the 
.MPP driver before doing so, passing a selector code. This routine then 
checks with each routine in the AppleTalk transition queue for permission 
to close the driver. Each transition queue routine uses the selector code to 
tell it what type of transition has been requested (or commanded, since 
some transitions are mandatory). 

You can define your own AppleTalk transition and define your own 
selector code for it. Rather than using PATalkClosePrep to check with the 
AppleTalk transition queue routines, you will use either ATEvent or 



252 .,.. Chapter 14 AppleTalk Phase II and AppleShare 

ATPreFlightEvent system calls. Call ATEvent with your selector code to 
notify each queue routine of your transition. Call ATPreFlightEvent with 
your selector code to notify each queue routine of your transition. You 
will also pass a second selector code which will be passed to each of the 
queue routines should any of them return a non-zero result after receiv
ing the first selector. 

Your AppleTalk transition queue routine should return a result of zero 
for any selector which you choose not to handle or do not know about. 
Returning a non-zero result in either of these cases may cause problems 
for either the system software or for some other application . 

..,. Obtaining Current Node Information Using the .MPP Driver 

Use PGetAppleTalklnfo, a new call to the .MPP driver, to get the follow
ing information about the current machine (node): 

• Whether the capability of sending packets from the current node 
to itself is enabled 

• The low and high values of network numbers on the local cable (if 
the cable is not LocalTalk) or, if the cable is LocalTalk, the network 
number 

• The 24-bit AppleTalk network address for the current node 
• The 24-bit AppleTalk network address for the last router that the 

current node has heard from 

Other information is also returned in this parameter block. This call 
makes it much easier and simpler to find out about the current node and 
its status on the network . 

..,. Wi ldcard Characters for the Name Binding Protocol 

Applications use the Name Binding Protocol primarily to look up 
addresses on the network or internet. A common reason for doing this is 
to locate a server. When requesting addresses, you can specify whether 
you want the search to take place in the current zone or all zones. 

You can now use three wildcard characters when requesting network 
addresses. An equal sign (=) represents all possible non-null values for 
the object or type fields . An asterisk (*) represents the current zone, so 
that you don't have to look up the current zone name. Phase II adds the 
tilde(-), which you can use to match any or no characters in the object or 
type fields. Only nodes running Phase II drivers will recognize this wild-



.,.. Applelalk Data Stream Protocol 253 

card character. An example of using the tilde is a-e, which would match 
Apple, Ale, and Age. 

~ Compatibility and AppleTalk 

To use the new functions described in this chapter, you need to find out 
which version of the AppleTalk drivers you're running with. Do this by 
calling Gestalt with a selector of gestaltAppleTalkVersion. If the version 
number is greater than or equal to 53, then your driver implements 
Phase II. 

~ Applelalk Data Stream Protocol 
The AppleTalk Data Stream Protocol (ADSP) provides a robust, easy-to
use protocol that application programmers can easily use. You can trans
mit a stream of bytes (hence the protocol name) from one node to 
another. The protocol divides the stream into a set of packets and auto
matically reassembles them at the other end. This makes it easy for appli
cations to talk to one another. 

After you open a connection between any two nodes on an internet, 
they can exchange data using ADSP. This means that the nodes can be on 
a single network or on different networks. Only one connection can be 
open between any pair of nodes, but any node can have open connec
tions to other nodes. 

~ Using the ADSP-Important Data Structures 

To use ADSP, you first have to use the MPPOpen call to open the .MPP 
driver. This driver handles the lower-level protocols that ADSP runs 
above. You then need to call OpenDriver to open the .DSP driver, which 
implements ADSP. 

To establish and use a connection over ADSP, you need to allocate a 
Connection Control Block (CCB), which is described in detail in the Apple
Talk Manager chapter of Inside Macintosh, Volume VI. This data structure 
is used by ADSP for storing its internal variables. You can read from the 
fields in a CCB, but for the most part, you are not allowed to change 
anything in it. 

To use ADSP, you first fill out a DSPParamBlock record, which is 
described in the AppleTalk Manager chapter of Inside Macintosh, Volume 
VI. After filling out this data structure, you then make the appropriate 
system call. Calls are handled by the .DSP driver, which is shipped as 
part of System 7. 



254 ..,. Chapter 14 AppleTalk Phase II and AppleShare 

~ . The ADSP Calls 

Let'll now look at each ADSP-related call in turn and see what it is used 
for. Following this, you'll look at how to use them. 

Use the dsplnit call to assign a socket for use by the .DSP driver and 
initialize the variables needed for this connection. This call does not open 
the connection, but prepares everything for the open call. You need to 
pass the address of the CCB for this connection. A CCB reference number 
is returned if this call is successful, and you'll use this reference number in 
all other calls to the .DSP driver. 

Call dspRemove when you are done with a connection (after the con
nection has been closed). 

To open the connection, use the dspOpen call. You can choose from 
one of four connection modes. 

• ocRequest mode-Attempts to open a connection with the speci
fied network address for the remote node 

• ocPassive mode-Waits for an open-connection request from a 
remote node 

• ocAccept mode-Used by a server to open a connection to a client 

• ocEstablish mode-Used by a client to open a connection with a 
previously known node 

To close a connection, call dspClose. The connection end still exists, 
and you can still read from the receive queue. 

Use the dspCLinit call in place of dsplnit if you are opening a socket 
that will be listening on the network. The CL in the call name stands for 
Connection Listener. If you are developing a server using ADSP, the 
server would open sockets using dspCLinit, which functions much like 
the dsplnit call. 

To listen for connection requests, use the dspCLListen call in a server. 
You must have used the dspCLinit call to initialize the connection 
end. You can call dspCLListen several times to accept more than one 
connection. 

To deny a request from a client for a connection, use the dspCLDeny 
call in a server. 

Use the dspCLRemove call to close a connection end for a server. It 
functions much like the dspRemove call . 

To find out the current status of a connection, call dspStatus. This call 
returns the number of bytes remaining to be sent and received, and the 
space left in the send and receive queues. It also returns a pointer to the 



~ AppleTalk Data Stream Protocol 255 

CCB for this connection, which you can use to find other information 
about the connection. 

Use the dspRead call to read bytes from the connection's receive queue. 
You can request that it read a certain number of bytes, and when the call 
has completed, it will tell you how many bytes it actually read. 

Call dspWrite to write bytes to the connection's send queue. Bytes 
remain in the queue until they have been transmitted to the remote node 
and that node has acknowledged receiving them. The send queue trans
mits bytes to the remote node when you call dspWrite with the flush 
parameter on, when the number of bytes in the send queue reaches its limit 
(known as the blocking factor), when the send timer expires, or when an 
acknowledgment packet is required to be sent to the remote node. You can 
send an arbitrary amount of data with one call to dspWrite. Bytes will be 
sent a buffer at a time until all the bytes have been sent. 

To send an attention message to the remote node on the connection, use 
the dspAttention call. This feature is especially useful for sending control 
messages or data separate from the data sent with the dspRead and dsp
Write calls. 

Use the dspOptions call to set optional parameters for the connection, 
such as the maximum number of bytes that should be accumulated before 
ADSP sends out a packet. Another parameter is the maximum number of 
out-of-sequence data packets that the local end can receive before 
requesting the remote end to retransmit. 

To reset and resynchronize the connection, use the dspReset call. All 
data in the send queue, in transit, and in the remote node's receive queue 
will be discarded. 

... Using the ADSP Calls 

You' ll now look a t what it takes to open and use an ADSP connection 
with another node. You can use the calls in this subsection to create an 
online conferencing application or a multiuser game running over a net
work. You can also use these calls to talk with a server process, either on 
the same machine or another machine. In this case, the client of the server 
would use the calls in this subsection, and the server would use the calls 
in the following subsection. For details, refer to the AppleTalk Manager 
chapter of Inside Macintosh, Volume VI. 

First, open the .MPP driver by calling MPPOpen, and open the ADSP 
driver (.DSP) by calling OpenDriver. Then, allocate memory for the Con
nection Control Block (242 bytes), for the send and receive queues (600 
bytes or more per queue), and for an a ttention message buffer (570 bytes). 
These blocks of memory must be locked, so you can allocate them using 



256 ..,. Chapter 14 AppleTalk Phase II and AppleShare 

NewPtr. Remember that this memory is owned by the ADSP driver after 
you initialize the socket with the dsplnit call, so you cannot read or write 
to this memory directly until you shut the connection down with a call to 
dspRemove. 

Call dsplnit to set up the connection end on this node. If you need a 
specific socket number, you can ask for it at this time. Call NBPRegister 
now if you need to establish the name and address of this socket on the 
network. Call dspOptions if you need to modify any of the default 
parameters for this connection end. 

Call dspOpen to open the connection using one of the four modes 
explained earlier: ocAccept, ocEstablish, ocRequest, or ocPassive. If you 
are talking with an ADSP listener, you should look up its address using 
the NBPLookup system call and then call dspOpen in ocRequest mode. 

Use dspRead and dspWrite to send and receive data with the remote 
socket. Use dspAttention to send an attention command to the remote 
socket. 

Call dspClose when you're done talking with the remote node and you 
want to continue using the local connection end. Call dspRemove if you 

.have no further need of the local connection end. 

~ The ADSP Calls for a Connection Listener 

Now let's look at what it takes to open and use an ADSP connection 
listener. For the details, refer to the AppleTalk Manager chapter of Inside 
Macintosh, Volume VI. A connection listener is a special kind of connection 
that exists solely to receive open-connection requests. It hands the request 
to the connection server, which can establish a connection end and send 
an acknowledgment back to the node that requested the connection. 

First, open the .MPP driver by calling MPPOpen, and open the ADSP 
driver (.DSP) by calling OpenDriver. Then allocate memory for the Con
nection Control Block (242 bytes). This block of memory must be locked, 
so you can allocate it using NewPtr. Remember that this memory is 
owned by the ADSP driver after you initialize the socket with the 
dspCLinit call, so you cannot read or write to this memory directly until 
you shut the connection down with a call to dspRemove. 

Call dspCLinit to set up the connection end on this node. If you need a 
specific socket number, you can ask for it at this time. Call NBPRegister 
now if you need to establish the name and address of this socket on the 
network. 

To wait for an open-connection request, call dspCLListen asynchro
nously. If you made this call synchronously, your application wouldn't be 
able to do anything until a request was sent. When a request does come 



.,.. File Sharing 257 

in, you'll be told the remote node's addxess and parameters associated 
with that node. 

If the server accepts the request, call dsplnit to set up a local connection 
end, then call dspOpen with a mode of ocAccept. The server and client 
can now send and receive data using the dspRead and dspWrite calls, 
and can send attention messages using the dspAttention call. Use dsp
Close or dspRemove to close the connection when you're done. If the 
server denies the request, call dspDeny. To wait for another open-con
nection request in either case, call dspCLListen again. 

When you're ready to shut down the connection listener, call 
dspCLRemove . 

...,. File Sharing 

As mentioned in the introduction to this chapter, File Sharing provides a 
personal version of the AppleShare file server software. Thus, program
mers can always assume their applications can have access to a file server. 
Also, users on small networks do not have to purchase an additional 
machine for use as a file server. Several upgrade paths beyond File Shar
ing are available, however. Users can purchase an additional Macintosh 
to run as a dedicated AppleShare server, or they can purchase other third
party file server software that uses the AppleShare protocol. 

The client portion of AFP, Apple Talk Filing Protocol, has been a part of the 
standard AppleTalk softwaxe shipped as part of the system for some time. 
This protocol is used to request files and data from files located on a server. 
Portions of a file can be locked using byte-range locking, as described in the 
File Manager chapter of Inside Macintosh, Volume IV, without having to deal 
with AFP directly. Writing multiuser application software becomes a lot eas
ier because the File Manager handles AFP for you. 

Client software is also available for the Apple lie, Apple IIGS, and 
MS-DOS machines. The Apple lie and MS-DOS machines require a card 
to connect them to an AppleTalk network. The server portion of AFP runs 
on AppleShare servers, and now on any Macintosh that has enabled File 
Sharing. 

In System 7, for the first time a version of the server software that 
understands AFP is also a standard part of the Macintosh system. File 
Sharing can be used to share up to ten hard disks (whether they are fixed, 
removable, or CD-ROMs) or folders. Floppy disks cannot be shared. 

Volumes or directories shared using File Sharing behave just like 
AppleShare volumes on the network. Once an AppleShare or File Shar
ing volume has been mounted, it behaves like any other mounted volume 
to the user with the exception of access control. 



258 ..,. Chapter 14 AppleTalk Phase II and AppleShare 

Each machine has an owner name, password, and Macintosh name. 
The machine's owner can use his or her owner name and password to 
access all files on his or her machine from anywhere else on the network. 
The Macintosh name is used by others to select the machine from the 
network. 

A user can manage File Sharing on his or her machine by specifying the 
following for each user and for the guest account. 

• Which volumes and/ or directories will be shared 

• What type of access is permitted to each volume or directory 
(read-only, read/write, and so on) 

Each user controls the access to his or her machine by means of the 
Users and Groups Control Panel, as illustrated in Figure 14-2. The user 
must create a description of each user who will be permitted access. A 
special guest account can be used to allow access to anyone without spe
cific permission, as illustrated in Figure 14-3. 

Remember that access to a Macintosh (and what remote users have 
access to) is controlled solely by the local user. This is a potential network 
management problem if File Sharing becomes widely used beyond local 
workgroups. The solution to this problem is to migrate files that are used 
beyond local workgroups to AppleShare servers. AppleShare servers 
have management tools, which reduce the administrative burden of net
work and system administrators. The capabilities of File Sharing can be 
administered locally only. 

0 Users & Groups 0 
3 items 16.7 :MB in disk 21,3 :MB available 

0 0 [] ~ 

<Guest> Diana Bea~sRive:t 

Figure 14-2. The Users and Groups folder 



<Guest> 

U File Sharing 
:~: 

[8] Allow gue-sts to connect 

~ Program Linl<ing 

0 Allow guests to l ink to pr-ogr-ams 
on my Macintosh 

..,.. Conclusion 259 

Figure 14-3. Controlling access for the Guest acco unt 

If your application potentially depends on the use of File Sharing, the 
documen tation that accompanies the application should describe how 
users should set up File Sharing on their machines. 

A Macintosh running with File Sharing will appear as an AppleShare 
server to other machines on the same internet. A Macintosh running Sys
tem 6 will be able to access files on such a machine. 

~ Conclusion 
In this chapter, you've looked at AppleTalk Phase II and Macintosh File 
Sharing. 

AppleTalk Phase II has eliminated or reduced many limita tions and 
inconveniences in the previous version of the architecture. Most of these 
changes are, fortunately, transparent to application developers and users. 

The AppleTalk Data Stream Protocol provides a powerful, but easy-to
use, protocol for application developers. ADSP can be used for both peer
to-peer communications and client-server systems. 

Macintosh File Sharing provides a low-cost file server that application 
programmers can now assume is omnipresent on Macintosh networks. 
This reduces one large barrier to multiuser software-the availability of 
an inexpensive file server. 



260 ~ Chapter 14 AppleTalk Phase II and AppleShare 

Get Info ..,. For more information about AppleTalk Phase ll, read the Apple
Talk Manager chapter of Inside Macintosh, Volume VI. For more 
information about the AppleTalk Manager, read the AppleTalk 
Manager chapters of Inside Macintosh, Volumes ll, IV, and V. For a 
detailed explanation of the AppleTalk architecture and each of the 
protocols, refer to Inside AppleTalk (second edition, Addison
Wesley, 1989). Other useful references are available through 
APDA, including AppleTalk Phase 2 Protocol Specification and 
Macintosh AppleTalk Connections Reference. 

For more information about using the File Manager for multiuser 
File Sharing, refer to the File Manager chapter of Inside Macintosh, 
Volume I. Also read Software Applications in a Shared Environment, 
available from APDA. 

To get more information about licensing the AppleTalk code 
from Apple, contact the Apple Software Licensing Department at 
408/974-4667. 



15 ~ QuickDraw 

~ Introduction 
In this chapter, you will look at the managers associated with QuickDraw, 
including the latest version of QuickDraw itself. The other managers cov
ered in this chapter are the Color Picker Package, the Palette Manager, 
the Picture Utilities Package, and the Graphics Device Manager. 

~ Some Background on QuickDraw 
QuickDraw is the name of the graphics primitives in the Macintosh oper
ating system. All other managers of the operating system and all applica
tions use QuickDraw directly or indirectly to draw on the screen and to 
output devices (such as printers). 

All of QuickDraw's functions are ultimately performed by a set of thir
teen procedures known as the QuickDraw bottleneck procedures. Sup
porting a new screen or output device comes down to writing a new set of 
QuickDraw bottleneck procedures, and this clearly works strongly to the 
advantage of application programmers. Without exaggerating too much, 
programmers writing application s can avoid worrying about which 
screens and printers their users have installed. Apple has forced the 
screen and printer manufacturers to support their devices so that applica
tion programmers don't have to. This is different from most other operat
ing systems, such as MS-DOS, where each application must contain code 
to handle each monitor and printer-an onerous burden for application 
programmers. 

Of course, if you want to take advantage of advanced features, such as 

261 



262 ..,. Chapter 15 QuickDraw 

32-bit direct colors, you'll have to write some code to use it. If, on the 
other hand, color is not an important feature, your application can still be 
used with any screen and any monitor. 

QuickDraw shipped with the first Macintosh. Color QuickDraw, which 
supports 8-bit indexed color, shipped with the Macintosh II. The third 
version, 32-bit QuickDraw, was first shipped with System 6.0.3 in May, 
1989. With System 7, Apple is shipping an enhanced version of 32-bit 
Quick Draw. 

IIIII- 32-bit QuickDraw 

With System 7, 32-bit QuickDraw has been improved and integrated into 
the operating system. This is the third major version of QuickDraw . 

..,._ Direct Color Devices 

The biggest change from Color QuickDraw is that direct color devices are 
now supported. In an indexed device (typically a color screen), colors are 
specified directly by giving a value for the red, green, and blue compo
nents of the color (hence RGB). RGB colors are specified (in the Macintosh 
operating system) as a set of three 16-bit integers, so an RGB color is 
therefore specified as a 48-bit number. The color device displays this color 
to the precision specified by the user in the Monitor cdev. This precision is 
obviously limited by the characteristics of the device. 

The latest version of Color QuickDraw supports two depths for use 
with direct color: 16-bit and 32-bit. Each pixel in a bitmap (color bitmaps 
are known as PixMaps) requires 16 bits or 32 bits of memory. This obvi
ously requires a lot of RAM. 

Since each of the three components of a color must be specified with 
the same number of bits, 16-bit direct color really means that 5 bits are 
used to specify the value of each component with 1 bit left over. 

Similarly, 32-bit direct color means that 8 bits are used to specify the 
value of each of the three RGB components. You can use the 8 bits left 
over for your own purposes. Why 8 bits and not 10 bits? The machine 
instructions of the Motorola family of CPU chips can work directly with 
8-bit bytes, but can' t work easily with 10-bit integers. 

The primary advantage of direct color devices is that the colors in an 
image can be represented extremely accurately. In fact, there are more 
colors available in 32-bit mode than the human eye can distinguish. 
Direct color devices offer photographic-quality color that indexed color 
devices can only approximate. 



..,. 32-blt QuickDraw 263 

..,.. Indexed Color Devices 

Let's take a brief look at indexed devices to better understand both types 
of devices. With an indexed device, instead of specifying colors directly, 
you specify the color of a pixel by giving an index number into a palette of 
colors. The device maintains this palette in a Color Lookup Table (CLUT). 
Palettes can typically hold no more than 256 colors, but each color is 
specified as a 48-bit RGB color. So you cannot display a lot of colors at 
one time on the screen, but you have a lot of colors to choose from. 

One advantage of indexed devices is that you can animate colors easily 
because you are only changing the values in the color lookup table, not 
the values in the bitmap. It doesn' t take much time to change 256 num
bers, so color animation using this technique has good performance. 

Another advantage is that less memory is required for indexed devices 
than for direct devices. QuickDraw supports 1-, 2-, 4-, and 8-bit indexed 
devices. Therefore, a byte (at most) is needed to specify the color of an 
individual pixel. The memory requirements for an indexed device are 
therefore less than for a direct device, and substantially less compared to 
32-bit direct devices . 

..,.. Improvements in 32-bit QuickDraw 

So far, you have looked at the differences between 32-bit QuickDraw and 
the two preceding versions of QuickDraw. Let's discuss the improve
ments that have been made to 32-bit QuickDraw now that it's a part of 
System 7. 

Th e changes made to 32-bit QuickDraw are as follows: 

• Support for direct (as opposed to indexed) color in PixMaps and 
the PICT2 format 

• Several new QuickDraw calls 

• Improved support for gray-scale displays 
• New routines that make it possible to tell QuickDraw you've been 

modifying its data structures 

Let's cover each of these changes in turn . 

..,.. Support for Direct Color in PixMaps 

A PixMap is the data structure used to hold all the information about a 
color picture. PixMaps, which were introduced with the first version of 
Color QuickDraw, replaced BitMaps in Classic QuickDraw. 



264 Jll> Chapter 15 QuickDrow 

Note.,. A BitMap is always one bit deep, that is, it can only represent a 
black-and-white image. A PixMap can be up to 32 bits deep and 
can be used to represent black and white, gray scale, or color 
images. 

Several changes have been made to the structure of PixMaps to support 
direct color. These changes, which do not change the size of the PixMap 
data structure, are changes in how certain fields in the data structure 
should be interpreted. The six fields that have changed are as follows. 

• pixelType-Can now have a value of RGBDirect, which means 
that the PixMap contains direct, and not indexed, color. 

• pixelSize-Can now be 16 or 32. Previously, the only valid values 
were 1, 2, 4, or 8. In all cases, pixelSize must be a power of 2. 

• cmpCount- The number of components in each pixel. For direct 
color PixMaps, cmpCount is 3, whereas for indexed PixMaps, it is 1. 

• cmpSize-The size of each component in a pixel. For direct 
devices, cmpSize can be 5 (for 16-bit PixMaps) or 8 (for 32-bit 
PixMaps). For indexed PixMaps, this number is equal to the pixel
Size field. The cmpSize is equal for all components of a color, and 
cmpSize * cmpCount must be less than or equal to pixelSize. 

• rowBytes-Previously had to be less than $2000, but can now be 
larger: rowBytes must now be less than $4000. For optimum per
formance, rowBytes should be a multiple of 4, but in any case it 
must be an even number. 

• pm Version-The version number of the PixMap data structure can 
be 4, in which case the PixMap's base address is assumed to be 
32-bit clean. This field is normally used by low-level code only, 
such as device drivers. 

The restrictions on cmpSize mean that there will be bits left over in 
each pixel of a 16-bit or 32-bit PixMap. For 16-bit PixMaps, 

16 [pixelSize] - (3 [cmpCount] * 5 [cmpSize]) = 1 

so 1 bit will be left over. For 32-bit PixMaps, 

32 [pixelSize] - (3 [cmpCount] * 8 [cmpSize]) = 8 

so 8 bits will be left over. These bits are not used by QuickDraw. In fact, if 
QuickDraw creates the PixMap, these leftover bits are zeroed out. How-



.,.. 32-bit QuickDraw 265 

ever, QuickDraw will not zero out these bits again; you could use these 
bits for some application-specific purpose. 

IJil- Support for Direct Color in the PICT2 Format 

By the Way ~ l 

Warning ~ 

The PICT2 format is used to store the details of a Color QuickDraw pic
ture, either in memory or on disk. A QuickDraw picture is simply a 
sequence of QuickDraw commands. Each command is stored as an 
opcode with its data following. 

PICT images can be played back on any Macintosh. PlCT2 images 
could only be played back on a Macintosh with a 68020 or later 
CPU chip because Color QuickDraw was written using some 
instructions available on a 68020 or la ter CPU chip. This limitation 
has been par tially removed in 32-bit QuickDraw, as you' ll see later 
in this section . 

The original PICT format used 1-byte opcodes. There weren' t sufficient 
opcodes for Color QuickDraw, so the PICT2 format was given 2-byte 
opcodes. The opcode and its associa ted data are followed by a pad byte if 
needed to make the length even. One problem occurs when working with 
PICT-formatted data with your own routines: The unused opcodes don't 
have a defined length. If you try to parse a PICT and you run into an 
undefined opcode, you don't know how long it is. Therefore, even if you 
want to skip over it, you can't because you don' t know where to jump. The 
latest version of the PICT2 format changes that because the length of every 
opcode has been defined. Apple has also reserved all unused opcodes for 
itself. You are not allowed to use a reserved opcode for your own purposes. 

Portions of the PICT format have been defined by Apple in a 
Technical Note. The other portions of the format, including the 
description of a QuickDraw region, have not been publicly 
described because they are an Apple trade secret. This is important 
because th e PICT and PICT2 formats are the basic graphics format 
used by almost a ll applications on the Macintosh, and if you ever 
needed to move images from the Macintosh to another platform, 
you'd need to know all the details of the PICT format. 

The PJCT2 format has been extended to support direct color. Two new 
opcodes support direct color: DirectBitsRect and DirectBitsRgn . The for
mer opcode is used to store a PixMap (which will always fit into a Rect). 



266 11> Chapter 15 QuickDraw 

I By the Way ~ I 

The latter opcode is used to store a region that contains a PixMap. 
Because the lengths of all opcodes are now defined, the operating system 
can read a PICT2 image on any machine. The DirectBitsRect and 
DirectBitsRgn opcodes are skipped on machines that do not support 
Color QuickDraw. Therefore, when playing a PICT2 image on a Macin
tosh SE, you'll see the image less any color or gray-scale PixMaps or 
regions containing PixMaps. Although this isn' t the ultimate solution, it is 
better than the previous inability to play the PICT at all. 

On an unrelated note, the FontName opcode has been added to enable 
developers to specify font names in addition to their IDs. In the past, 
previous limitations in the operating system led to problems maintaining 
the relationship between font IDs used on one machine and the IDs used 
for the same fonts on another machine. Using font names is now the 
preferred method of saving font information in a document, and this 
opcode brings the PICT2 format in line with this new method. 

This problem maintaining the identity of fonts across machines is a 
major flaw in the original design of the Macintosh operating sys
tem. The designers assumed that there would never be more than 
512 fonts on the Macintosh. As it turns out, thousands of fonts are 
now available. The font numbering scheme has been revised once 
(changing from using FONT resources to NFNT resources). Even 
that has proven to be insufficient, and now Apple recommends 
that font names be stored in a document instead of font lDs. 
Problems occur even with this solution-it turns out that several 
different fonts with the same name are available from different 
vendors. Apple recommends that font vendors prefix their com
pany name to the font name. This leads to long, cumbersome font 
names, but it does (finally!) solve the problem of tracking fonts 
across machines. TrueType fonts ('sfnt' resources) contain much 
more font identification information. Refer to Chapter 8 for a 
description. 

One other opcode was added to the PICT2 format: lineJustify, which 
lets you specify the justification of a line of text and the amount of extra 
space added to the line for justification. This opcode was added to provide 
support for the Script Manager. 

The data following a HeaderOp opcode, which is used to store a PICT 
header, has been redefined. The data now contains the HRes and VRes for 
the picture, using the largest value occurring in the picture in both cases. 



..,. 32-bit QuickDraw 267 

Note ..,.. QuickDraw does support PixMaps at resolutions other than 72 dpi 
(the standard screen resolution). The HeaderOp opcode, and the 
new OpenCPicture call, make it easier to support PixMaps at 
these other resolutions . 

..,_ Using New QuickDraw Calls 

Call OpenCPicture instead of OpenPicture to create an extended PICT2 
format file . This call works on all members of the Macintosh family, not 
just those that support Color QukkDraw. You need to pass the optimal 
rectangle (for displaying the picture) and the horizontal and vertical reso
lutions of the picture. When you're done drawing the picture, call 
ClosePicture (as before) . To draw it, call DrawPicture (also as before). 

Call BitMapToRegion to convert a bitmap or PixMap into a Quick
Draw region. You can then operate on the region using the QuickDraw 
region calls. You might want to do this to drag the outline of a bitmap 
using DragGrayRegion or to test for mouse hits against the bitmap. 

To find out if the drawing operations have all completed, call QDDone. 
You'd use this call if your application was graphics-intensive and if some 
of your users might be using a graphics accelerator card. These cards 
operate asynchronously to speed your application. 

Last, you can now call CopyBits (not a new call) using a new mode: 
DitherCopy. QuickDraw, when copying a PixMap to an indexed device 
in this mode, tries to minimize the errors in color matching by spreading 
them around the entire image. Note that the result of doing a clipped 
DitherCopy will not produce the same results as an unclipped Dither
Copy. 

Instead of ca lling CopyBits and then CopyMask, you can use the new 
CopyDeepMask routine that combines the two. It copies a BitMap or 
PixMap using another BitMap or PixMap as a mask. You can use any of 
the copy modes and, optionally, the new ditherCopy mode. 

Call GetGray, passing two RGB colors and a handle to a graphics 
device, to get the optimal color between the two specified colors. You can 
use this routine to get the best gray for use in graying menu items. This 
routine is simple to use (and is simpler than writing your own routine) 
and is especially useful since many people are now using non-mono
chrome displays. 

The QDError routine, which was introduced in Inside Macintosh, Vol
ume 5, has been enhanced. It no longer fails on machines without Color 
QuickDraw and can return several new error codes. 



268 ..,. Chapter 15 QuickDraw 

..,. Improved Gray-Scale Support 

To provide better support for gray-scale images, three default gray-scale 
color tables now provide evenly spaced sets of grays. Call GetCTable and 
ask for ctiD (color table ID) 34, 36, or 40 to get the default gray-scale color 
table for 2-bit, 4-bit, or 8-bit-wide gray-scale images. Don't forget that this 
call can also provide the default color tables (which provide a range of colors 
and not grays) by calling GetCTable and asking for a ctiD of 66, 68, or 72 to 
get the default color table for 2-bit, 4-bit, or 8-bit-wide color images. 

Color QuickDraw will use the default gray-scale color tables when the 
user has set a display to a gray-scale mode. QuickDraw automatically 
calculates the luminance of each color in the PixMap to be displayed and 
chooses the closest gray in the palette . 

..,. Telling QuickDraw That You've Been Fiddling 

Warning.,. 

It's never been advisable to alter most data structures that belong to the 
operating system. Apple has often warned programmers that it is a dan
gerous habit to get into because it leads to incompatibilities with future 
versions of the operating system, or with future machines. In fact, this is 
why many applications on platforms such as MS-DOS have to be modi
fied to run on so-called compatibles. MS-DOS programmers commonly 
modify operating system data. 

You can safely use many routines to modify the fields of a QuickDraw 
data structure, and you should use these routines if you need to modify a 
QuickDraw data structure. However, on occasion this rule must be vio
lated-perhaps a routine to fiddle with the data structure you need 
doesn' t exist, or you may be willing to live with the possibility that your 
application might not run on a future machine or a future version of the 
operating system. 

Another reason why you shouldn't fiddle with QuickDraw data 
structures directly is that QuickDraw maintains some private data 
structures that you don' t know about. If you change data struc
tures, the private data structures that QuickDraw maintains might 
not be in sync with the data structures you're changing. 

If you do fiddle directly with QuickDraw data structures, then you ' ll be 
pleased to hear that four new routines will let you tell QuickDraw that 
you've been changing fields in its data structures. These routines (and 
when they should be called) are as follows. 



lllll- The Color Picker Package 269 

• CTabChanged-After changing the content of a color table 
• PixPatChanged-After changing the content of a PixPa t data 

structure or either of its substructures (patMap or patData) 
• PortChanged-After changing the contents of a port or any of its 

substructures 
• GDeviceChanged-After changing the contents of a GDevice or 

any of its substructures 

If you have changed the content of the color table (CLUT) referenced 
by a PixPat, a port, or a GDevice, you also have to call CTabChanged . 

..,.. The Color Picker Package 

Warning ~ 

The Color Picker Package provides a standard dialog box allowing users 
to select a single color from a 48-bit range using either RGB (Red-Green
Blue) coordinates or HSV (Hue-Saturation-Value) coordinates. The user is 
presented with a color wheel that allows him or her to quickly go to the 
approximate range of the desired color. 

If your application requires that users select colors from a smaller 
range, you'll have to devise your own color selection dialog. There 
is no way to reduce the color choices in the standard Color Picker 
dialog. 

Call the GetColor routine to present the standard Color Picker dialog. You 
can specify where the dialog box should be located, the prompt for the dia
log box, and an initial color. If the monitor is running in color in 4-bit mode 
or greater, the dialog is displayed in color; in all other cases, the dialog is 
displayed in black and white. The dialog returns the output color (a 48-bit 
RGB color) selected by the user if the user has pressed the OK button. 

Many different color models are available, and each was derived for 
some area of the application. The Color Picker supports four color mod
els. RGB is used with video and video monitors, and color is additive: the 
more red or green or blue, the closer the resultant color gets to white. In 
the CMYK (Cyan-Magenta-Yellow-blacK) model, used by printers, color 
is subtractive: that is, the more cyan or magenta or yellow, the closer the 
color is to black. The HSV (Hue-Saturation-Value) and HLS (Hue-Light
ness-Saturation) models, used by graphic artists and designers, are quite 
similar and cannot be described as simply as the previous two models. 



270 .,.. Chapter 15 QuickDraw 

..,. Converting between Color Mode ls 

The Color Picker Package provides six routines to convert RGB colors to and 
from the other three models. These conversion calls are listed in Table 15-1. 

Table 15-1 . Color model conversion routines 

Color Model 
CMY 
HSL 
1-lSV 

To Convert from 
RGB to tile Model, Call: 
RGB2CMY 
RGB2HSL 
RGB2HSV 

To Convert from 
tile Model to RGB, Call: 
CMY2RGB 
HSL2RGB 
HSV2RGB 

The RGB model specifies a color by using three 16-bit integers: one for 
red, one for green, and another for blue. The other three models specify 
their components as SmallFracts-that is, a number in the range of 0 to 1. 
Two routines convert to and from SmallFracts: call Smal1Fract2Fix to 
convert a SmallFract to a fixed integer, or Fix2Sma11Fract to convert a 
fixed integer to a SmallFract. 

..,.. The Palette Manager 
The Palette Manager manages the color and gray-scale needs of all appli
cations and the opera ting system across all the monitors on the system. 
Your application can use the Palette Manager to manage sets of colors or 
grays, to an imate color tables, and to control your application 's use of 
colors and grays . 

..,. Types of Colors 

You control how colors are used in your application by specifying usage 
flags for each color in a palette. You can use fi ve flags: courteous, tolerant, 
animating, explicit, and inhibited. 

A courteous color accepts the closest match that the Color Manager can 
find in the CLUT. By using courteous colors, your application will cause 
no changes in the CLUT. On direct devices, a courteous color produces 
the specified color (to the limits of the device). 

A tolerant color either accepts a match from the CLUT within the speci
fi ed tolerance or adds the exact color to the CLUT. That is, on indexed 
devices, tolerant colors force their way onto the CLUT if there isn 't a color 
within the range you've speci.fied . On direct devices, a tolerant color pro
d uces the specified color (to the limits of the device). 



liJJ> The Palette Manager 271 

An a11imating color is used to produce animation effects on indexed 
color devices. Animating colors have no effect on direct devices. 

An explicit color is produced by the specified index into the CLUT. This 
is not an especially useful property by itself, but is most often used in 
combination with either the tolerant or animating property to guarantee 
that a color gets a specific index in the CLUT. 

An i11hibited color is prevented from appearing on the specified kinds of 
devices. You can specify the following devices: 2-bit, 4-bit, or 8-bit gray
scale andjor 2-bit, 4-bit, or 8-bit color devices. This property, specifiable 
in detail, gives you detailed control of your palettes on d ifferent types of 
display devices. For example, Apple recommends that you inhibit tolerant 
colors when displaying on a gray-scale device because the Palette Man
ager uses a default CLUT, which in this case produces the best results. 

Warning Ill> Test your application on displays set to the various combinations 
(2-bit, 4-bit, and 8-bit, color or gray-scale) to verify what you're 
doing with inhibited colors . 

.,. Creating and Using 'pitt' (Palette) Resources 

You can create a default palette that the Palette Manager will use to color 
a ll windows that don' t have a defined palette. This is a quick way of 
getting color onto windows without doing a lot of work. Simply give the 
'pitt' resource an ID of 0. If your application h as windows without an 
associated 'pitt' resource and your application doesn' t have a 'pitt' resource 
of ID 0, the Palette Manager will use the default 'pitt' resource in the 
System (of ID 0). Figure 15-1 shows a 'pitt' resource. 

Call GetNewPalette to retrieve the specified 'pitt' resource. This routine 
initializes the priva te variables in the resource. Don ' t use the Get
Resource call to retrieve a palette resource, or these variables won' t be 
initialized. Call NewPalette to create a new palette with the specified 
number of entries and color table. You' ll also supply a set of usage flags 
and a tolerance value that will be used for each of the colors in the palette. 
Call DisposePalette to deallocate a palette. Don' t use DisposeResource 
to do this, or the Palette Manager will get confused-'pltt' resources con
tain private data used by the Palette Manager. 

To re trieve the specified entry in the specified palette, call GetEntry
Color. To set the specified entry in a palette, call SetEntryColor. Call 
GetEntryUsage and SetEntryUsage to get and set the usage and toler
ance values for the specified enh·y in the palette. 



272 ..,. Chapter 15 QuickDraw 

Number of entries 

Header 

'pitt' 
resource 

+ + 

Private data (7 bytes) Array of Colorlnfo entries 

Each Colorlnfo entry looks like this: 

RGB - red component 
RGB -green component 

RGB - blue component 
Color usage flags 
tolerance 

Private flags and data 

Figure 15-1. A 'pitt' (pa lette) resource 

Call CTab2Palette to copy the data in a color table to a palette, and call 
Palette2CTab to perform the inverse operation . 

~ Using Palettes with Windows 

Call ActivatePalette after changing a v.rindow's palette (using the Palette 
Manager routines such as SetEntryColor or SetEntryUsage). This call 
generates update events for all windows affected by the changes to the 
palette if the specified window is frontmost. You should call this routine 
after making an entire set of changes to a palette, not after each change. 
The Window Manager also calls ActivatePalette whenever your window 
opens, closes, moves around, or comes to the front. 

To get a handle to the palette of the specified v.rindow, call GetPalette. 
If you pass the value of -1 for the window pointer to this routine, you'll 
get a handle to the default palette for your application. 

Call SetPalette to set the palette of the specified window to the speci-



..,.. The Palette Manager 273 

fied palette. You also specify whether the window should receive update 
events if a change in its color environment occurs. To set the default appl i
cation palette, specify a window pointer of -1. If you need more control 
over exactly when you want your window to receive update events, use 
NSetPalette. This call a llows you to specify whether the window should 
receive update events if there is a change in its color environment when 
the window is in the frontmost position or not in the frontmost position, 
always and/or never. Call SetPaletteUpdates and GetPaletteUpdates to 
set or get the update attribute of the specified palette . 

..,_ Working with Palettes 

Call PmForeColor and PmBackColor to set the RGB and index fields of 
the foreground and background colors, respectively, of the current win
dow to the values of the specified en try in the window's palette. Call 
SaveFore and SaveBack to return the current foreground and back
ground colors, respectively. Call RestoreFore and RestoreBack to set the 
current foreground and background colors, respectively. 

To make a copy of a palette, call CopyPalette. Once again, don't use 
the Resource Manager routines to do this (or your own code) because the 
Pale tte Manager maintains its private data in palettes. Call ResizePalette 
to enlarge or reduce the size of a palette . You specify a palette and the 
number of entries that should be in it. 

Call RestoreDeviceClut to change the CLUT of the specified device to 
its default state. If any changes in color happen because of this, update 
events will be posted to any windows displayed (partially or completely) 
on this device . 

..,_ Animating Palettes 

Two new system calls have been provided to simplify palette animation. 
Call AnimateEntry to change a single color entry in a palette. Pass a 
pointer to the appropriate window, an index to the palette entry to be 
changed, and the new color. No animation will happen if the palette 
entry is not an animated color. 

To simultaneously change a range of colors in a palette, call Ani
matePalette. Pass a pointer to the appropriate window, an index to the 
first entry to be changed, a count of the number of entries to be changed, 
a handle to a new color table, and an index to the firs t entry in that color 
table to be copied. This routine then modifies as many entries in the win
dow's color table as possible. 



274 .,.. Chapter 15 QuickDrow 

.,... The Graphics Device Manager 

The Graphics Device Manager is used primarily by QuickDraw, the 
Palette Manager, and the Color Manager to communicate with graphics 
devices, including monitors and output devices. Occasionally, some 
applications may need to do this, especially applications that are 
graphics-intensive. 

You might find this manager interesting because it also provides rou
tines to create and manage offscreen bitmaps. These capabilities can 
change users' perceptions of your application, because you can build a 
picture behind the scene and then quickly display it on the screen. Your 
application appears more responsive to your users. 

The important data structures used by the Graphics Device Manager 
are the GDevice record, which is used to store all the data needed to 
describe the device, and the GWorld record, which is used to describe an 
offscreen bitmap. Let's first look at using offscreen bitmaps and then 
move onto some of the other things you can do with the Graphics Device 
Manager. 

~ Creating GWorlds 

A GWorld record is an extension of a color GrafPort record (a cGrafPort 
record). You create an offscreen bitmap as a GWorld. If you're working in 
color, you need to create an associated GDevice record (the details of 
GDevice records follow). If you're working in monochrome, you don't 
need to create a GDevice record. 

Also associated with a GWorld record is a set of flags used to control 
offscreen graphics. These flags, contained in a structure called a GWorld
Fiags record, describe the following. 

• Whether the GWorld can use temporary memory 
• Whether the bitmap is purgeable andjor locked 
• Whether the GWorld was modified and in what ways by a call to 

UpdateGWorld 

Notice that the GWorld's bitmap can be purgeable. If you allow it to be 
purgeable, then your code should be capable of handling the situation if 
the bitmap is purged; in this case, you'll have to recreate the bitmap. 

Create a new GWorld record by caHing NewGWorld. You need to spec
ify the pixel depth, the bounds rectangle, a color table, a set of GWorld
Fiags flags, and an optional handle to a GDevice record. The NewGWorld 



~ The Graphics Device Manager 275 

call allocates memory for the GrafPort and the PixMap. Call OpenCPort to 
initialize the GWorld record before using it. 

In addition to specifying whether the associated PixMap is purgeable 
when you create it, you can also control whether the bitmap is purgeable 
after it's been created by calling AllowPurgePixels and NoPurgePixels. 

Before drawing to the GWorld record, you must lock its PixMap down 
by calling LockPixels. This Boolean call returns, telling you whether the 
PixMap has been purged. When you're done drawing, call UnlockPixels. 

Call GetPixelsState to find out whether the PixMap has been purged 
and whether it has been locked. Call SetPixelsState to set the state of the 
PixMap. Use these two calls to save the current state of the PixMap, per
form some operation(s) on it, and then restore its previous state. 

Use the UpdateGWorld routine to change the parameters of a GWorld 
record, such as its bounds rectangle, pixel depth, and color table. You can 
specify whether the PixMap should be clipped, stretched, andjor dith
ered. lf the PixMap was purged, this call will reallocate it. 

Call GetGWorld to get the current port (whether it is a GrafPtr, 
CGrafPtr, or GWorldPtr) and the current GDevice record. Call SetG
World to set the current port (whether it is a GrafPtr, CGrafPtr, or 
GWorldPtr) and the current GDevice record. 

Call GetGWorldDevice to get a handle to the device attached to the 
specified offscreen world. Call GetGWorldPixMap to get a handle to the 
PixMap record of the specified offscreen world. Use this routine when 
using the offscreen graphics world routines such as GetPixelsStateand 
LockPixels. 

Before directly accessing a PixMap, call PixMap32Bitto find out 
whether the specified PixMap must be addressed in 32-bit mode. Call 
GetPixBaseAddr to get a 32-bit pointer to the PixMap pixels. To access 
the pixels, first switch to 32-bit mode, do what you need to do to the 
pixels, and then switch back to 24-bit mode (if that's where you started). 
Don't use any QuickDraw routines between your call to GetPixBaseAddr 
and accessing the pixels, or the contents of an offscreen buffer may no 
longer be accurate. 

To deallocate a GWorld record and all its associated memory, call 
DisposGWorld. This call also deallocates the GDevice record if one was 
created for this offscreen world . 

.,... Using GDevice Records 

The GDevice record holds all the information needed to control a graph
ics device. When the system boots up, it creates a linked list of GDevice 
records for each graphics device that the system finds. You can also create 



276 .,.. Chapter 15 QulckDraw 

GDevice records when building an offscreen bitmap. In this case, the rec
ord doesn' t necessarily describe a physical device-you might create a 
GDevice record that describes your ideal graphics world. After drawing a 
picture in this environment, you could copy it to a screen. 

The GDevice record contains the following information. 

• Device type 

• Preferred resolution 

• An inverse color table (used to check if a particular color is avail
able in the device's CLUT) 

• The boundary rectangle of the GDevice record (relative to the 
screen with the menu bar on it) 

• A handle to the pixel map of the displayed image 

• A set of status flags 

The record also contains some private data that belong to the Graphics 
Device Manager. 

Several routines enable you to work with GDevice records. Let's look 
at the routines that might prove useful when developing application 
software. 

To create a new GDevice record, call NewGDevice and specify whether 
it is associated with a physical device. This call does not insert the GDevice 
record into the linked list maintained by the Graphics Device Manager, but 
applications shouldn' t be doing that anyway. You also specify the mode 
(monochrome or color) when creating the GDevice record. 

To get a handle to the current GDevice record, call GetGDevice. This 
call allocates all the memory required for this record and the handles in 
the record. When it finishes, it returns a handle to the current GDevice 
record. To get a handle to the main GDevice-that is, the GDevice record 
for the screen v.rith the menu bar- call GetMainDevice. To get a handle 
to the GDevice with the deepest device-that is, the GDevice record with 
the most bits per pixel-call GetMaxDevice . 

Call GetDeviceList to get a handle to the first device in the global 
device list. You can then call GetNextDeviceto get the next device in the 
list. When there are no more devices in the list, this call will return NIL. 

Call DeviceLoop, passing the address of a drawing procedure and a 
handle to your drawing region, to search all active devices and call your 
drawing procedure whenever a device intersects your drawing region. 
You also can pass 4 bytes of (user) data and some control flags. 

Call TestDeviceAttribute with a handle to a GDevice record to check 



IJil> The Picture Utilities Package 277 

for a particular attribute, such as whether the device supports color or if it 
is a screen device. You can call SetDeviceAttribute to set attributes for a 
device, but few applications will need to use this call. 

To check whether a device has a particular pixel depth and for its attrib
utes, call HasDepth with a handle to a GDevice record. You can call 
SetDepth to set the pixel depth and attributes, but set the pixel depth 
only if the user has given you permission to do this. Do not change the 
pixel depth of the monitor without asking the user first. 

When you're about to draw to an offscreen bitmap, call SetGDevice to 
make it the current device. You shouldn't need this call for any other 
purpose. 

Last, call DisposGDevice to deallocate a GDevice record and its associ
ated handles. You'll only need this call when disposing of offscreen 
bitmaps . 

..,.. The Picture Utilities Package 
The Picture Utilities Package contains routines that let you examine PICT 
files and PixMap records. By examining a PICT file with these routines, 
you can know more about its contents, such as which fonts and colors 
were used, the horizontal and vertical resolution, and the maximum pixel 
depth. This package is new starting with System 7 . 

.,... Examining PICT Files 

By calling GetPictlnfo and passing it a h andle to the PICT file and a 
PictlnfoRec data structure, the routine will walk through the file and store 
information about the PICT into the PictlnfoRec. The following informa
tion is returned: 

• Horizontal and vertical resolution of the picture 

• The rectangle that contains the picture at its default resolution 
• The number of lines, rectangles, rounded rectangles, ovals, arcs, 

polygons, regions, PixMaps, comments, and text occurring in the 
picture 

• The number of different comments in the picture 

• The number of comments of each type (optional) 

• The number of different fonts in the picture 
• The size(s) and style(s) used for each font (optional) 



278 ~ Chapter 15 QuickDraw 

• The name(s) of the font(s) (optional) 

• A PixMaplnfoRec that describes the contents of the PixMap rec
ord(s) in the picture (PixMaplnfoRec records are described below) 

If you need to collect this information about more than one PICT, 
there's another set of routines to make this easier. First, call NewPictlnfo 
to get a unique ID for this set of queries. This call also sets up some private 
storage to collect the PICT information. Then call RecordPictlnfo, pass
ing it the unique ID and a handle to the PICT for each PICT you want to 
examine. 

When you want to examine the results, whether or not you're done 
running PICTs through the RecordPictlnfo routine, call RetrievePict
Info. This routine returns a PictinfoRec data structure, similar to GetPict
Info, but the horizontal and vertical resolutions in the record are the 
highest resolution encountered. When you' re done examining PICTs, call 
DisposePictlnfo to allow the Graphics Utility Package to dispose of its 
private s torage . 

.,.. Examining Pixel Maps 

By calling GetPixMaplnfo and passing it a handle to the PixMap record 
and a PixMapinfoRec data structure, the routine will examine the PixMap 
and store information about it into the PixMapinfoRec record . The fol
lowing information is returned: 

• Horizontal and vertical resolution of the PixMap 

• The pixel depth 

• The number of colors occurrin g in the PixMap 

• A handle to a palette containing all the colors in the PixMap 
(optional) 

• A handle to a color table containing all the colors in the PixMap 
(optional) 

You specify the maximum number of colors you'd like (in the palette 
andjor color table). You also specify whether the colors selected should 
be the widest range or the most popular. 

If you need to collect this information about more than one PixMap, 
there's another set of routines to make this easier. Firs t, call NewPictlnfo 
to get a unique ID for this set of queries. This call also sets up some private 
storage to collect the PixMap information. Then call RecordPixMaplnfo, 



~ Conclusion 279 

passing it the unique 10 and a handle to the PixMap for each PixMap you 
want to examine. 

When you want to examine the results, whether or not you're done run
ning PixMaps through the RecordPixMaplnfo routine, call RetrievePix
Maplnfo. This routine returns a PixMapinfoRec record, similar to 
GetPixMaplnfo, but the horizontal and vertical resolutions in the record 
are the highest resolution encountered. The depth is the deepest encoun
tered, and the color table andjor palette contain colors from all the 
PixMaps. When you're done examining PixMaps, call DisposePictlnfo to 
allow the Graphics Utility Package to dispose of its private storage . 

...,. Customizing the Picture Utilities 

One of the parameters that you pass when calling the GetPixMaplnfo 
and GetPictlnfo routines tells them how to sample color. You can ask that 
colors be sampled so that you get either the most popular colors or the 
widest range of colors. Unless you specifically require one of these sam
pling methods, you should let the utilities choose the sampling method. 
By doing this, your application will be compatible with future versions of 
the Picture Utilities, which may support other sampling methods. 

You can also provide your own color sampling method. You'll need to 
write four routines to do this: 

• InitPickMethod-allocates any storage required and initializes 
method 

• RecordColors- records colors if you create your own custom 
color bank (the default is to store colors in a 5-5-5 (RGB) bit deep 
histogram) 

• CalcColorTable-calculates how many unique colors were added 
to the color bank and returns the requested number of colors from 
the color bank 

• DisposeColorPickMethod-deallocates any memory allocated in 
the InitPickMethod routine 

...,. Conclusion 
In this chapter, you've seen all the changes to QuickDraw. Most of these 
changes were previously available under System 6 as a separate package 
known as 32-bit QuickDraw. This package has been integrated into the 
operating system with System 7. The biggest change is that direct color 



280 .,.. Chapter 15 QuickDraw 

Get Info .,.. 

devices are now supported. Color images can be displayed on such 
devices with photographic realism. 

For more information on Color QuickDraw, refer to the Color 
QuickDraw chapter and the Graphics Overview chapter in Inside 
Macintosh, Volume VI. You should also review the Color Quick
Draw chapter in Inside Macintosh, Volume V, and you might also 
want to review the QuickDraw chapter in Inside Macintosh, Vol
ume I. 

For more information on the Color Picker Package, refer to the 
Color Picker Package chapter in Inside Macintosh, Volume VI. Note 
that this chapter completely replaces the Color Picker Package 
chapter in Inside Macintosh, Volume V. 

For more information on the Palette Manager, refer to the Pal
ette Manager chapter in Inside Macintosh, Volume VI. Note that 
this chapter completely replaces the Palette Manager chapter in 
Inside Macintosh, Volume V. 

For more information on the Picture Utilities Package, refer to 
the Picture Utilities Package chapter in Inside Macintosh, Volume 
VI. 

For more information on the Graphics Device Manager, refer to 
the Graphics Device Manager chapter in Inside Macintosh, Volume 
VI. Note that this chapter completely replaces the Graphics Device 
Manager chapter in Inside Macintosh, Volume V. 



16 ~ The Memory Manager 

...,. Introduction 
This chapter covers the two large changes in the Memory Manager 
brought by System 7. The first and most obvious change is virtual mem
ory, which allows users to use disk space to simulate more expensive 
RAM. The addition of virtual memory affects few applications directly, as 
you will see, but it will make life easier for many users. 

The second change is the generalization of the temporary memory 
calls, which were introduced with MultiFinder. The restrictions on using 
temporary memory meant tha t few applications took advantage of it. 
With System 7, most of these restrictions have been removed or at least 
loosened. 

Last, you' ll look at compatibility with 32-bit addresses (known as 32-bit 
cleanliness), which is important for compa tibility with System 7. System 7 
can operate in 32-bit mode now, and applications that are 32-bit clean 
should indicate this in their 'SIZE' resource. The Finder will warn users to 
beware if they launch an application that does not indicate this. Such an 
application may very well run in 32-bit mode, but the warning message 
will make users a bit nervous. This is a good time to clean house and set 
that bit. 

...,. Virtual Memory 
Virtual memory (or VM) allows users to simulate RAM on a hard disk. A 
user might have only 2 Mb (megabytes) of physical RAM, but by using 
disk space, he or she could run various applications as if there were, for 

281 



282 IJil> Chapter 16 The Memory Manager 

example, 4Mb of RAM. This is done by mapping logical memory onto a 
combination of physical memory and disk sectors. The operating system 
keeps track of memory in pieces known as pages. Under System 7, pages 
are 4K long. 

When a page of memory is needed but is not in physical RAM (this 
occulTence is known as a page fault), the operating system goes to the 
disk, retrieves the page, copies it to memory, and allows the application to 
proceed. This process must happen so quickly that it is implemented in 
hardware. The hardware requirement is that an MMU, or Memory Man
agement Unit, must be available. Any Macintosh that uses a Motorola 
68030 or later CPU chip has an MMU built into the CPU. Any Macintosh 
that uses a Motorola 68020 must have a separate 68851 MMU. Macintosh 
computers that use a 68000 cannot have virtual memory because there is 
no MMU chip designed for use in these machines. 

The Memory Manager creates a backing store file to hold memory pages 
on a disk selected by the user (called the paging device). The backing store 
file must be as large as the total size of virtual memory, but it does not 
have to be contiguous, allowing for a simple, one-to-one mapping 
between logical memory and the backing store file. In the example, if the 
user wants 5Mb of virtual memory, then the Memory Manager will cre
ate a 5 Mb file on the paging device. 

The paging device must be an HFS volume, because currently the store 
must be capable of block-level IjO calls. AppleShare volumes and for
eign file systems (A/UX, Apple II, and MS-DOS, for example) cannot do 
this under the Macintosh operating system today . 

.--By- th_e_W_a_y_.,..-.1 The backing store file does not have to be contiguous. If it was 
required to be contiguous, many users would have to back up their 
disk, reformat it, and restore their files to use virtual memory. This 
is because files tend to become fragmented on a disk over time. 
However, a noncontiguous backing store file can be created at any 
time, as long as sufficient disk space is available on the disk. 

The architecture of the virtual memory system is controlled primarily 
by the basic design of the Motorola MMUs and CPUs. Refer to the manu
als for these chips for more information on the low-level details of imple
menting VM. The form of VM implemented under System 7 is known as 
demand paging-pages of VM are brought into RAM when they are 
required (on demand). 

Few applications need to work directly with virtual memory. Those that 
do need to work directly with VM will have critical timing requirements. 



..,. Virtual Memory 283 

Device drivers may need some virtual memory system calls for timing 
reasons as well, or because they are executing a t interrupt time. This topic 
is discussed below. 

Applications should not use privileged instructions, because alternate 
ways of accomplishing the same purposes (such as checking for a math 
coprocessor) a re available. Until System 7, the operating system and 
applications always ran in Supervisor mode on the 680x0 CPU. VM runs 
in Supervisor mode and applications now run in User mode. To maintain 
compatibility with the small number of applications that did use Privi
leged instructions, the operating system emula tes some of these instruc
tions in software. This does affect performance. 

Debuggers also need to know about virtual memory. System 7 provides 
a set of calls for debuggers to make their way around virtual memory. 
Refer to the Memory Manager chapter in Inside Macintosh, Volume VI for 
more details on these routines. 

A schematic of 24-bit virtual memory is illustra ted in Figure 16-1. Vir
tual memory in a 24-bit world is confined to 16Mb. The 255 other 16 Mb 
slots are not used except to map NuBus slots, ROM, and l/ 0 into 32-bit 
mode. Of the 16 slots having 1Mb, slot 8 is used for the system ROM and 
slot 16 for I j O space. The maximum amount of virtual memory in a 24-
bit machine is therefore 14Mb. The memory slots between these two slots 
can be used either by a NuBus card or for virtual memory. Last, each 1Mb 
slot is mapped into 256 pages, each of a length of 4K. 

The virtual memory system implemented in System 7 does not provide 
memory protection. One application can still write to memory used by 
another application, potentially causing it to crash or to corrupt its data. 
This version of virtual memory also does not provide multiple address 
spaces, so MultiFinder memory can still be fragmented, reducing the per
formance of the machine. 

~ Compatibility and Virtual Memory 

Check that an MMU and virtual memory exist before making any virtual 
memory-related calls to the Memory Manager. You can do this by first 
calling Gestalt with a selector of gestaltMMUType. This call returns with 
a value indicating no MMU is present, an AMU (Address Management 
Unit in Macintosh lis) is present (this isn' t an MMU), a Motorola 68851 
PMMU is present, or a Motorola 68030 with built-in PMMU is present. 

Next, call Gestalt with a selector of gestaltVMAttr. This call returns 
with a description of the virtual memory system. If you're curious about 
the virtual memory page size, call Gestalt with a selector of gestalt
Logi.calPageSize. To find the amount of logical and physical memory, call 



284 IJI> Chapter 16 The Memory Manager 

slot15 = 1/0 

slot14 

slot13 

slot 12 

slot 11 

slot tO 

slot 9 

slotS= ROM 

slot 7 

slot 6 

slot 5 

slot 4 

slot3 

slot 2 

slot 1 ---- slot 0 

All of virtual 
memory space is 
mapped to ... 

256 x 16MB slots, 
each of which is 
mapped to ... 

16 x 1MB slots, 
each of which is 
mapped to . .. 256 pages of 4KB 

Figure 1 6-1 . Schematic diagram of 24-bit virtual memory 

Gestalt with selectors of gestaltLogicalRAMSize and gestaltPhysical
RAMSize . 

..,. Contro lling Virtua l Memory 

A page or range of pages of virtual memory can be held in physical mem
ory. This means that the page will always be in physical memory, but it 
can move around. A page or range of pages can be locked into physical 
memory. This means tha t the page will always be in physical memory 
and that it cannot move around. For performance reasons, try to hold 
pages of VM rather than locking them. Holding is faster and requires less 
overhead than locking does. 

Whenever a page or range of pages is held or locked, they must be 
unheld or unlocked. If a page is held twice, it must be unheld twice. This 
also holds true for locking pages. 

The HoldMemory call forces the Memory Manager to hold the pages 
containing the given range of memory. This call rounds down to the near-



..,.. Virtual Memory 285 

est page boundary and up to the nearest page boundary so that all the 
given addresses will be on held pages. The UnholdMemory call marks 
the pages containing the given addresses as unheld. 

The LockMemory call forces the Memory Manager to lock the pages 
containing the given range of memory. This call rounds down to the near
est page boundary and up to the nearest page boundary so that all the 
given addresses will be on locked pages. The LockMemoryContiguous 
call locks the pages into contiguous physical memory. The UnlockMemory 
call marks the pages containing the given addresses as unlocked. 

The GetPhysical call takes one or more logical addresses and translates 
them into physical addres.ses. This call is used by drivers that need to 
know the physical addresses corresponding to a logical address. 

When the operating system is handling a page fault, the only other code 
that can execute at that time is at interrupt level. If that code causes a page 
fault, the result is known as a double page fault. The operating system does a 
lot of things to prevent double page faults from happening. For example, 
Time Manager tasks, IjO completion routines, and VBL (Vertical Blanking) 
tasks are all deferred until any paging operations have been completed. The 
operating system maintains these tasks in a queue, which guarantees that 
they will be executed in the same order in which they would have been. 

The DeferUserFn function allows interrupt handlers to defer code that 
may cause page faults until a later (and safer) time. It might be used, for 
example, in an l jO completion routine. The function checks whether the 
call to the completion can be made safely. If it can, it is executed. If not, 
the routine address and its parameters are stored, and the routine is exe
cuted when it is safe to cause a page fault. 

.,... So Who Does Have to Worry about Virtual Memory? 

Memory-intensive applications, such as gray-scale and color paint programs, 
scanner software, and multimedia applications, will not be able to use virtual 
memory to store large images, because virtually all mass storage devices are 
on the SCSI bus. The paging device is also on the SCSI bus. If you try to read 
in a large image (or many smaller images) into virtual memory, the images 
will come from a file on disk into memory, only to be spooled back out to the 
backing store file on disk. This stalemate will slow the application's perfor
mance enormously. Memory-intensive applications should warn users if 
there is not enough RAM to run efficiently. 

Most applications do not have to do anything to take advantage of VM. 
One of Apple's goals in implementing VM is that it should be transparent 
to most applications. For the most part, Apple has succeeded in doing this. 

One concept that does affect the relationship between applications and 
· VM is known as locality of reference. If your routines tend to call other 



286 Jll> Chapter 16 The Memory Manager 

routines and reference data that are located nearby, then your application 
is said to have locality of reference. Such applications will tend to perform 
better under VM than other applications because VM will tend to have 
nearby code and data in memory already. 

You need to write device drivers with a little more care if they are to run 
under System 7. Load drivers into the System heap, not an Application 
heap. Use the Read and Write calls (part of the Device Manager) to h·ans
fer data, because the operating system will automatically ensure that the 
buffers used in these calls stay in RAM. If your application talks to hard
ware directly, move the code that does talk to hardware into a d river. 
Although your application might run under System 7 in its current form, 
by moving hardware-dependent code into a driver today, you' ll have 
fewer problems in the future. 

NuBus drivers are affected by virtual memory the most. Actually, only 
drivers for cards that can be NuBus masters will have to worry about 
virtual memory. Passive cards (such as video cards) should have no 
problems under VM, because these cards can control the NuBus and read 
and write to system memory. Under virtual memory, they will have to 
ensure that when reading from or writing to memory, they are using a 
valid physical address, since cards do not address memory through the 
MMU. This is the same issue as with Macintosh llci memory cache cards. 

~ Temporary Memory 
When temporary memory was introduced with MultiFinder, it was 
accessed through a special set of system calls and allowed applications to 
use memory that was not allocated to applications for short periods of 
time. Applications were expected to return this memory before the next 
call to GetNextEvent or WaitNextEvent. The system required temporary 
memory calls to access these chunks of memory- you could not use regu
lar Memory Manager calls on temporary memory. These restrictions dis
couraged most developers from ever using these calls. System 7 has 
loosened or eliminated most of the restrictions. 

Why use temporary memory in an.y case? Temporary memory is a poten
tial source of memory for inputjoutput buffers (the Finder uses temporary 
memory for copying files), for storing the results of idle-time calculations, 
and so on. One complication that arises from using temporary memory is 
handling the case when there isn't enough (or any) available. This does 
complicate your code, but using temporary memory can enable your appli
cation to run more quickly. Using temporary memory also means that the 
recommended memory partition size can be smaller in some cases. 

Also, most applications can use extra memory during a handful of opera
tions, such as opening, closing, or printing documents. Since these are a 



..,. Temporary Memory 287 

small subset of all the functions that applications typically do, you may 
find it relatively easy to use temporary memory in these circumstances . 

..,. Differences in Temporary Memory: Now and Then 

Under System 6, temporary memory had to be released before the next call 
to GetNextEvent or WaitNextEvent. The short amount of time that tempo
rary memory was available undoubtedly restricted its potential uses. Under 
System 7, temporary memory can be kept for an arbitrarily long time, 
although good citizens will return the memory as soon as possible. 

Another restriction in using temporary memory under System 6 was 
that a specialized set of calls had to be used. You couldn't use Dispos
Handle on a temporary memory block; you had to use MFTempDispos
Handle (now called TempDisposHandle), which required temporary 
memory blocks to be handled with special code. Under System 7, you still 
have to allocate temporary memory through special calls (that's reason
able), but you can use most of the regular Memory Manager calls to work 
with temporary memory blocks. 

If your application does hold onto temporary memory, the user may 
not be able to start another application. This condition might continue 
until either your application lets go of the temporary memory or the user 
quits an application. 

The opera ting system tracks each application 's use of temporary mem
ory. When your application quits (or crashes), any temporary memory it's 
still using is returned to the system. Therefore, if your application uses 
VBL or Time Manager tasks that live on beyond your application, do not 
pass them references to temporary memory . 

..,. Compatibility and Temporary Memory 

Before you use any of the temporary memory calls, check to see if they are 
available. To do this, call Gestalt with a selector of gestaltOSAttr . If the 
results show that the gestaltTempMemSupport bit is on, then temporary 
memory routines are available. If the gestaltRealTempMemory bit is on, 
then you can use the normal Memory Manager routines to operate on 
temporary memory blocks. Last, if the gestaltTempMemTracked bit is on, 
then you can use temporary memory blocks for an arbitrary time . 

..,. Temporary Memory Calls 

With all these changes, the only temporary memory calls you might need 
to use under System 7 are TempFreeMem, TempMaxMem, and Temp
NewHandle. Three of the old calls are now obsolete, although they still 



288 ~ Chapter 16 The Memory Manager 

Note.,. 

work: TempDisposHandle, TempHLock, and TempHUnlock. The 
TopMem call is obsolete as well-The original purpose of this call was to 
return the total amount of usable memory, and this is now better deter
mined by a call to Gestalt. 

The temporary memory routines (introduced under System 6) 
MFFreeMem, MFMaxMem, MFTempDisposHandle, MFTem
pHLock, MFTempHUnlock, MFTempNewHandle and 
MFTopMem have been renamed under System 7 primarily by 
removing the MF- prefix. The old routine names will still work 
under System 7 for compatibility. 

You can use the following Memory Manager routines with temporary 
memory blocks: 

• DisposHandle 

• EmptyHandle 
• GetHandleSize, SetHandleSize 

• RecoverHandle 
• ReallocHandle 

• HandleZone 
• HLock, HUnlock 
• HPurge, HNoPurge 

• HSetRBit, HClrRBit 

• HGetState, HSetState 

You might prefer to check how much temporary memory is available 
before trying to allocate it. The preferable way to do this is to call 
TempMaxMem, which first compacts the MultiFinder heap zone and 
returns the size of the largest contiguous free block. TempFreeMem 
returns the total amount of free memory. You may not be able to allocate 
a block that large, because it might not be contiguous. 

You should always check whether the handle returned by TempNew
Handle is empty. If it is empty, check the error code. Memory blocks 
returned by TempNewHandle will be unlocked and purgeable. If you do 
use HandleZone to figure out where the temporary memory handle came 
from, don't try to make new blocks in that zone or perform heap opera
tions. You shouldn't care where this memory comes from. 



..,.. 32-Bit Cleanliness 289 

..,. 32-Bit Cleanliness 
Macintosh computers with 32-bit clean ROMs (the Ilci, Ilsi, LC, and the 
Ilfx are examples) can be run in either 32-bit mode or 24-bit mode, at the 
user's discretion. All other Macintosh computers can be run only in 24-bit 
mode. 

Thirty-two bit cleanliness has nothing to do with the standard size of 
integers that your compiler uses; it has to do with the way you use mem
ory addresses. If your code makes no assumptions about the structure of 
pointers, handles, and all other Memory Manager data structures, then 
your code is probably 32-bit clean and can run in 32-bit mode. Figure 
16-2 shows a 24-bit memory map; Figure 16-3 shows a 32-bit memory 
map. 

16Mb 

Application [ 
heap(s) 

8Mb 

0 Mb 

10 Space 

BufPtr world 

' ,. w .. ;~ 

,. 
NuBus slot in use 

i;, li 

ROM 
,, 

" 

'I., 

I•• '' :'!li!illi n. :1'. "h,J!iJt!!Ji II 

" ., ~ 

I, 
,, 'h,_'llii IIi ,1 l twJli, :II! , 

'If '<r • 'II 

" II 

,-

1-

NuBus 
slot 

space 

= Memory space 
usable for VM 

/ 
/ ~II 

0 Mb 

System heap 

1-L-o_w_m_e_m_o_r_y_g_lo-ba-ls~ 

Figure 16-2. A 24-bit memory map 



290 "" Chapter 16 The Memory Manager 

4096 M 

3856 M 

3840 M 

1280 M 

1024 M 

Applica tion 
partition(s) 

b 

b 

b 

b 

b 

I-
1 Mb 

OM b 

NuBus slot space 

Unmapped 

NuBus slot space 

IOSpace 

ROM 

BufPtr world 

Figure 16-3. A 32-blt memory map 

c=J = Memory space 
usable for VM 

Some applications are not 32-bit clean because they were written with 
the knowledge that pointers and handles were 24-bit numbers under pre
vious versions of the operating system. The Memory Manager kept its 
status bits (whether a handle was locked, purgeable, or a resource) in the 
other 8 bits. Some programmers would try to save a few microseconds 
and directly manipulate these flags instead of using the appropriate sys
tem calls. Other applications assumed that additional data could be s tored 
in the last 8 bits of addr~sses. Now that the operating system can use all 
32 bits of pointers and handles, it's pretty obvious that altering system
level data structures is a bad idea. It always was-the Tech Support group 
at Apple has been warning about this sort of thing for years. 

A/UX also uses all 32 bits of addresses, and there's no reason why the 
vast majority of Macintosh applications cannot run under it. Before Sys
tem 7 was released, AjUX provided a test bed to check whether an appli
cation was 32-bit clean. 

In several cases, you need to be especially careful to remain 32-bit 
clean: when writing WDEFs (window definition procedures) and CDEFs 



..,. 32-Bit Cleanliness 291 

(contro l definition procedures), and when using memory addresses in 
calculations . 

..,. WDEFs, CDEFs, and Cleanliness 

Under previous versions of the operating system, both the Window Man
ager and Control Manager kept the variant code in the last 8 bits of the 
handle to the definition procedure. Under System 7, you can avoid this by 
using two new system calls, GetWVariant and GetCVariant, to retrieve 
the variant code. These calls are available only under System 7, so if the 
definition procedure can operate under both Systems 6 and 7, your code 
will have to handle both cases. 

CDEFs have one more problem that needs to be dealt with: the calc
CRgns message used the high-order bit as a flag. This was the only way to 
write a CDEF, so there was no way around this problem until System 7. 
The Control Manager under System 7 provides two new messages, 
calcCntlRgn and calcThumbRgn, which replace the previous message 
and flag. Once again, this is only available under System 7, so if the defi
nition procedure can operate under both Systems 6 and 7, your code will 
have to h andle both cases . 

..,. Calculations on Memory Addresses 

The StripAddress function, a routine which predates System 7, was pro
vided as part of the Memory Manager to provide a safe way to get only 
the address portion of a handle. This is needed when running in 24-bit 
mode under System 7 because only the first 24 bits are a memory address. 
NuBus device drivers needed to call StripAddress because the driver 
might briefly switch the CPU into 32-bit mode to access a hardware 
address on a NuBus card. At these times, whenever the driver was using 
the address of a heap object, it would need the address of that object 
without anything else. 

You also had to use StripAddress when performing arithmetic on 
memory addresses, such as comparing two addresses. If any of the last 8 
bits were set by the Memory Manager, then the comparison could be 
invalid. 

When the Memory Manager is operating in 32-bit mode, the Strip
Address function does nothing. A/UX (and future versions of the Macin
tosh operating system) will always run in 32-bit mode. At that time, the 
StripAddress function will be obsolete. 

Call Translate24To32 to translate a 24-bit address into a 32-bit address 



292 . ..,. Chapter 16 The Memory Manager 

space. When running in 24-bit mode, this routine may not re turn an 
address that can be used . 

..,_ Passing Along the A5 World 

By the Way~ I 

Various pieces of code are not part of an application, yet need to address 
the application globals. Examples of this code include Time Manager 
tasks, VBL tasks, and notification requests. Two routines, SetCurrentAS 
and SetAS, can be helpful in getting your application's current AS value 
and setting the AS register, respectively. 

The term A5 world refers to the application globals, QuickDraw 
globals, and the application jump table. All of them are accessible 
through the AS register of the CPU. The operating system sets up 
and maintains all three sets of data. 

Compatibility and 32-Bit Cleanliness 

Applications that are 32-bit clean should indicate this by setting the 
is32BitCompatible flag in their 'SIZE' resource. If this flag is not set, then 
the Finder will warn the user that the application may not be safe and that 
they might consider rebooting into 24-bit mode. This will happen even if 
your application really is 32-bit clean and that bit is not set. 

..,.. Conclusion 

In this chapter, you've looked at two changes in the Memory Manager. 
Virtual Memory allows the user to simulate more expensive RAM with 
less expensive disk space. Users need enough RAM for their average 
usage rather than RAM for their maximal usage of memory. 

Temporary memory, which was available only under rather restrictive 
conditions, is now more readily available. Applications that occasionally 
require larger amounts of memory can take advantage of temporary 
memory. Rather than choosing slower performance (living with smaller 
amounts of memory) or lots of memory (even though some of this mem
ory is only occasionally needed), you now have a third choice. 

You've also looked briefly at the concept of 32-bit cleanliness. If your 
application is not 32-bit clean, your users will get annoying warning mes
sages when running under System 7, which will not please them. Your 
application may also fail to run, which will really annoy your users. 



Get Info II> 

II> Conclusion 293 

For more information on virtual memory (VM) and temporary 
memory, refer to the Memory Manager chapter of Inside Macin
tosh, Volume VI. You may also want to refer to the Memory Man
ager chapters in Inside Macintosh, Volumes I and IV. For more 
information on the chips in the Macintosh that form the basis of 
VM, refer to the MC68851 Paged Memon; Management Unit User's 
Manual and the MC68030 Enhanced 32-Bit Microprocessor User's 
Manual, both from Motorola Corporation. Phil Goldman wrote an 
excellent article on Macintosh Virtual Memory in the November 
1989 issue of Byte. His article dearly explains the inner workings 
of the VM system. 



17 ~ Processes 

.,.. Introduction 
In this ch apter, you will look at three managers that are associated with 
processes on the Macintosh: the Process Manager, the Notification Man
ager, and the Time Manager. The Process Manager is a new manager 
provided by System 7. The other two have been enhanced with the 
release of System 7. 

The first manager discussed in this chapter is the Process Manager. The 
Macintosh operating system does not yet support preemptive multitask
ing, even with System 7. In the meantime, in the MultiFinder model of 
cooperative multitasking, each application depends on all other running 
applica tions to behave in a reasonable and cooperative manner. This 
means you can' t hog all available memory and so on . The Process Man
ager, introduced with System 7, lays some of the groundwork required for 
preemptive multitasking. 

System 7 brings MultiFinder completely into the operating system. It's 
now so much a part of the operating system that users can no longer turn 
it off- there is no longer a mode that runs one, and only one, application. 

You' ll then move on to the Notification Manager, which provides a way 
for applications running in the background to communicate in reasonable 
ways with the user. This manager was introduced with MultiFinder and 
has since been revised. 

Last, you' ll look at the Time Manager, which provides scheduling serv
ices for setting routines to run at a certain time or at periodic intervals. 
This manager has also been revised for System 7. 

295 



296 .,.. Chapter 17 Processes 

..,. The Process Manager 
The Process Manager provides services to launch applications, launch desk 
accessories, and get information about your application and other pro
cesses. System 7 introduces a new concept: process serial numbers. You'll 
look at this concept first and then at how processes are scheduled. Then 
you' ll look at how to use the new routines provided by the Process 
Manager. 

~ Process Serial Numbers 

The Process Manager assigns each active application or desk accessory a 
unique process serial number (PSN). A process serial number is 64 bits 
long, and the meaning of the bits in a PSN is private to the Process Man
ager. Process serial numbers are used in specifying addresses for high
level events or in controlling other processes. 

The concept of process serial numbers requires the concept of a process. 
Under System 7, a process is an application that has been launched and 
has an AS world. An application in this context includes applications (files 
of type 'APPL') and desk accessories (files of type 'DFIL') . 

~ Process Scheduling and Switching 

Once your application has been scheduled to run, it doesn't relinquish 
control until it calls the Event Manager. Specifically, your application can 
be switched only when it calls WaitNextEvent, GetNextEvent, or 
EventAvail. Another application cannot gain control until your applica
tion calls one of these three routines, whether your application is running 
in the foreground or background. 

With cooperative multitasking, your application calls one of these rou
tines regularly whether you're running in the foreground or background. 
Otherwise, processes running in the background or foreground, respec
tively, won' t get enough CPU time. Low-level code, such as 1/0 comple
tion routines and device drivers, will still get some CPU time in any case. 

You can switch your application in two ways: a major switch or a minor 
switch. A major switch happens when your application is switched from 
the foreground to the background (or vice versa). A minor switch happens 
when your application is running in the foreground and, because you 
have no events to process, processes in the background are given some 
CPU time. Note that your application won' t do anything while in the 
background unless you've coded it to do something there. 

A user causes your application to make a major switch by bringing 
another application into the foreground (if you're running in the fore-



..,.. The Process Manager 297 

ground at this time) or by bringing your application into the foreground 
(if you' re running in the background at this time). 

Let's look at the first case in a little more detail. The second case is 
identical, except tha t the names of the applications are differen t. Suppose 
your applica tion, MacWidget, is running in the foreground and cannot do 
anything while in the background. The user clicks on a window belong
ing to ano ther application, MacMyGarden, to design a garden. Let's also 
assume tha t both applications have been written to work with System 7, 
and they specifically understand how to work with suspend and resume 
events. The following things happen to make this context switch happen. 

• The user has been using MacWidget. 

• The user clicks on a window belonging to MacMyGarden . 

• The Process Manager is told to bring about the context change, so 
it issues a suspend event to MacWidget. 

• The next time MacWidget calls WaitNextEvent, it gets the suspend 
event. 

• MacWidget prepares to switch into the background. 

• MacWidget calls WaitNextEvent and is suspended. 

• The P rocess Manager saves the context of MacWidget. 

• The Process Manager restores the context of MacMyGarden. 

• The Process Manager sends a resume event to MacMyGarden . 

• The Process Manager resumes the execution of MacMyGarden. 

• MacMyGarden, which was suspended on a call to WaitNextEvent, 
gets the resume event. 

• MacM yGarden prepares to run in the foreground. 
• MacMyGarden calls WaitNextEvent and waits for further input 

from the user. 

Minor switches are simpler in nature. Figure 17-1 illustrates what hap
pens during a minor switch. If your application calls WaitNextEvent and 
there are no events for your application, then your context is saved and 
the context of the next scheduled background application is restored. The 
background applica tion then gets CPU time but is not moved to the fore
ground. The only kind of event that an application running in the back
ground can get is a null event, an update event, or a high-level event. The 
background application runs until it calls WaitNextEvent again. Its con
text is then saved, and the foreground's context is restored and set run
ning again. 



298 ..,.. Chapter 17 Processes 

Foreground 

~ process calls 
Event Manager 

~, 

Is there an event No..., Save the context Schedule a 
for foreground of the foreground 

_.... 
background ... ~ 

process? process process 

Yes 

~lr ~r 

Foreground Restore the context 

~ process gets of the background 
CPU time process 

j~ 

~, 

Restore the context Send an event to 
of the foreground the background 

process process 

j~ 

~, 

Save the context of Background 
Background process the background 1.....11 process calls ..... 

process 
-... 

Event Manager 
..... gets CPU time 

Figure 1 7-1 . What happens during a minor switch 

..,_ Launching Applications 

Call LaunchApplication to launch the specified application. You must 
also supply whether your application should be terminated after the 
launch with the launchContinue flag. If your application does not termi
nate, the other application is launched the next time you call an Event 
Manager routine such as WaitNextEvent. You can also specify various 
control flags, in addition to the launchContinue flag, as follows. 

• launchUseMinimum- To launch the application in the smallest 
partition possible (that is, greater than or equal to the minimum 
partition size, and hopefully less than the maximum partition size) 



.,.. The Process Manager 299 

• launchDontSwitch-To launch the application into the background 
rather than the foreground 

• launchAllow24Bit-To launch an application that does not have 
the Is32BitCompatible bit set in its 'SIZE' resource 

• launchinhibitDaemon-to disallow launching a background-only 
application 

If you want to be notified when the process you're launching termi
nates, set the acceptAppDied flag in its 'SIZE' resource. Your application 
will receive an "unexpected Quit" AppleEvent when the other process 
terminates. 

You can specify an optional high-level event that will be sent to the 
application as soon as it is launched. For more information on high-level 
events, see Chapter 7 in this book. 

The LaunchApplication routine returns the process serial number, the 
preferred partition size, the minimum partition size, and the maximum 
available partition size. The last value is returned only if the application 
couldn't be launched because of a memFuliErr error. 

When the Finder launches an AppleEvent-aware application, it does 
not use the application parameters used in earlier systems. Instead, it 
launches the application and passes the application parameters using 
AppleEvents. 

The LaunchApplication routine replaces the old Launch routine. This 
old routine still works for compatibility, but new applications should use 
the new call. 

llJi. Launching Desk Accessories 

Call LaunchDeskAccessory to launch the specified desk accessory. 
(However, you should use the OpenDeskAcc call to launch a desk acces
sory when the user chooses it from the Apple menu.) The desk accessory 
is given its own partition and launched in the system heap unless the user 
holds down the Option key. In that case, if the desk accessory is in an 
open resource fork available to the launching application, the desk acces
sory is opened in the application's heap. If the desk accessory is already 
open, it is brought to the foreground. 

llJi. Getting Information about Other Processes 

Call GetCurrentProcess to get the process serial number of the current 
process. The current process is the process associated with the currentAS 
low-memory global. This call works whether the current application is in 



300 IJ> Chapter 17 Processes 

the foreground or background. Your application can use this call to find 
out its process serial number. A driver or other low-level code can use this 
call to find out the current process. You might use GetCurrentProcess to 
locate an address to send a high-level event. 

You can get a list of all current processes by calling GetNextProcess, 
passing it a process serial number, until you get an error of procNot
Found. The first time you make this call, specify a process serial number 
of kNoProcess, a predefined value. This will return the first process serial 
number. The next time you make this call, specify the first process serial 
number and you'll get the second process serial number, and so on. 

Call GetProcesslnformation to get the scoop on the process with 
the specified process serial number. This call returns the following 
information: 

• Whether the process is an application or desk accessory 
• The name of the process as it appears in the application menu 

• Creator type and signature 

• The address and size of its memory partition 
• The application that launched it and the time when it was 

launched 

• The location of the application or desk accessory file 

• Contents of the application 's 'SIZE' resource 

You can use this call on the current application by using the constant 
kCurrentProcess as the process serial number. 

To get the process serial number of the process running in the fore
ground, call GetFrontProcess. If you've developed an application as two 
pieces-a front-end application that handles the user interface and a 
back-end application that handles computations-the back-end applica
tion could use this call to find out if the front-end application is in the 
foreground or not. The back-end application might wait to send messages 
until the front-end application is in the foreground. 

Call SetFrontProcess to bring the process specified by a process serial 
number to the foreground. This process will be brought to the foreground 
when the current foreground process makes its next call to the Event 
Manager. 

Use WakeUpProcess to reschedule a process suspended by its last call 
to WaitNextEvent. This call will not move the specified process higher in 
the queue for execution, but it will be scheduled for execution as soon as 
its turn arrives. 



.,.. The Notification Manager 301 

To compare two process serial numbers, call SameProcess. This is the 
only way that you should compare process serial numbers, because some 
bits are private to the Process Manager in these numbers and will confuse 
a simple arithmetic comparison . 

..,. Compatibility and the Process Manager 

Before using the Process Manager, verify that it is available by calling 
Gestalt with a selector of gestaltOSAttr. The results from this call will tell 
you if the Process Manager is available, whether the _Launch trap can 
return to the caller, and whether the new parameters and flags for the 
LaunchApplication call are available. 

~ The Notification Manager 
The Notification Manager provides a set of services that enable processes 
running in the background to notify the user without disrupting the pro
cess running in the foreground. Potential clients of these services include 
applications, desk accessories, INITs, device drivers, Time Manager tasks 
(which you' ll look into in the next section}, VBL tasks, and l/ 0 comple
tion routines. The communications provided by the Notification Manager 
are in one direction only: from the background process to the user. It does 
not provide a direct method for the user to talk back to the code. Applica
tions and desk accessories running in the foreground can also use the 
services of the Notification Manager . 

The standard example of using the Notification Manager is the Print Mon
itor. Rather than beeping or taking over the screen, when the Print Monitor 
needs to tell you that the printer is out of paper, it alternates the small icon of 
the Print Monitor with the Apple in the menu bar. It also places a small 
diamond next to the application's name in the application menu. 

Applications and other types of code use the Notification Manager by 
giving it a /l otification request, which is immediately queued by the Notifi
cation Manager. This manager handles the request as soon as it can get to 
it. In other words, the notification services are asynchronous. 

The Notification Manager provides three different ways to alert users. 

• Polite notification- By a lternating a small icon with the Apple in 
the menu ba r. The icon will continue to be displayed until the 
application or desk accessory removes the notification request. 

• Audible notification-By playing the system beep or another 
sound from an 'snd ' resource. The sound will be played one time 
a t most. 



302 .,. Chapter 17 Processes 

• Alert notification-By displaying an alert dialog box on the screen, 
which the user must acknowledge. This alert will be displayed one 
time at most. 

You can request to use these methods in any combination. When using 
any of these methods, you can also optionally request that a diamond be 
placed next to the name of the application or desk accessory doing the 
notifying. The diamond, which provides a signal to the user to bring that 
application to the front, remains next to the name until the notification 
request has been removed. This option is obviously of no use to other 
types of code, such as device drivers. 

You can also ask the Notification Manager to execute a notification 
response procedure, which will be executed after all other notifications for 
this request have been performed. You shouldn't use this procedure to 
displa y anything on the screen. Use it to verify that the user has 
responded to the notification or to perform some function if the notifica
tion was posted. If you don't need to do anything more than remove the 
notification request from the queue, you don't need to write a notification 
response procedure. When submitting your request, you can specify that 
the Notification Manager remove the request automatically. The request 
will be removed from the queue, but it will not be deallocated. 

Apple recommends that polite notification be the default. If you use 
audible notification, allow the user to turn it off. Apple also recommends 
that users be able to turn off all background notification if this is safe (if 
no data will be lost) . 

..,. Using the Notification Manager 

To install a notification request, fill out a notification request and specify 
what method(s) of notification you'd like. You can optionally specify the 
address of a notification response procedure to be executed as the final 
stage of a notification. Then call NMinstall to install this record in the 
Notification Manager's queue. If a request is installed by an INIT, then the 
user will not be notified until the operating system is completely up and 
running. 

Call NMRemove to remove a notification request from the queue, 
regardless of whether it has been processed. 

~ The Time Manager 
System 7 brings the third major revision of the Time Manager. The sec
ond version of the Time Manager was introduced with System 6.0.3, but 
was never documented outside Apple Computer. The first version was 



Important .,.. 

..,. The Time Manager 303 

introduced with the Macintosh Plus and was documented in Inside Mac
intosh, Volume IV. The operating system was then the primary client of 
the Time Manager. Since then, some applications have used it to schedule 
tasks, but the third version makes it much more accurate than the previ
ous versions. 

The Time Manager provides some time-related services that enable you 
to accurately schedule routines to execute at a particular time, or to exe
cute at some periodic interval. You can also use the Time Manager to 
accurately measure time intervals. 

Multimedia and animation applications should use the facilities of 
the Vertical Retrace Manager for scheduling display activities. This 
can reduce or eliminate flicker, something you can't do when 
using the Time Manager. · 

The time-related services are independent of the CPU chip on the cur
rent machine. Measuring time by knowing how many clock cycles a loop of 
code takes to execute is no longer accurate, because the 68020 and later 
CPUs have an instruction cache. These CPUs can process parts of instruc
tions before they are executed, making it difficult or impossible to know 
how long a set of instructions will take to execute (in terms of CPU cycles). 

All of the Time Manager calls use Time Manager task records, which 
the Time Manager maintains in a queue. There are two versions of these 
records. You must use the new version of these records to get the highest 
accuracy from the Time Manager, but you can use either version of these 
records with the latest version of the Time Manager. 

..,.. Accuracy of the Time Manager 

In the first version of the Time Manager, the time intervals could be speci
fied in milliseconds and the maximum range was almost 24 hours. The 
latest version of the Time Manager allows delays to be specified to a reso
lution of 20 microseconds. The maximum delay specifiable in millisec
onds is about a half an hour. 

Use the higher accuracy available in the new version of the Time Man
ager to measure time intervals. Note, however, that if you try to schedule 
a task to run frequently, you may not have any CPU time left for anything 
else. 



304 .,_ Chapter 17 Processes 

..,. Fixed-Frequency Scheduling 

The previous versions of the Time Manager made it impossible to execute 
a task at a drift-free, fixed periodic interval, because the time count speci
fied when calling PrimeTime (see below) was relative to the current time. 
This count couldn't take into account the execu tion time needed by 
the Time Manager and other low-level code. With the latest version of the 
Time Manager, when a task is rescheduled with the PrimeTime call, the 
Time Manager modifies the time count you pass to it so as to take into 
account the amount of time since the task last expired. This means that a 
task can be scheduled to execute at a fixed frequency, and the execution 
time won't drift. 

..,. Time Manager Tasks 

Time Manager tasks execute at interrupt time. This means that they can
not use the Memory Manager in any way, either directly or indirectly. 
Tasks also should not access handles to unlocked blocks-these may not 
be valid at interrupt time. The A5 world may not be valid either, so you 
need to set up the AS world if you need access to application globals. 
Tasks should preserve the state of all registers besides AO through A3 and 
DO through D3. 

When quitting, remove all tasks your application has installed. Other
wise, the Time Manager will try to execute the task. Since the pointer to 
the task will no longer be valid, you might cause the operating system to 
crash. If you want to install a task that will continue to execute after your 
application has quit, you could install the task in the system heap. 

Use the Notification Manager if you need to communicate directly to 
the user from a Time Manager task. This is because the task is executing in 
the background (in the sense that it is "behind" the application) . 

..,. Compatibility and the Time Manager 

If you want to use the newest featmes of the Time Manager, you' ll need 
to check which version of the Time Manager is available when your 
application is running. Do this by calling Gestalt with a selector of ges
taltTimeMgrVersion. If the version number is equal to (or greater than) 3, 
then you can use the features introduced with System 7. 



..,. The Time Manager 305 

~ Creating and Using Time Manager Tasks 

You can use Time Manager tasks for doing any task that must be executed 
periodically according to an absolute clock. This is different from tasks 
that must be executed periodically relative to a display's vertical retrace 
interval. You might use a Time Manager task to generate periodic events 
that force an application to update a \-vindow with the la test values from 
some background activi ty. For example, you could display accurate s tatis
tics about a communica tions channel or a real-time process, such as errors 
per second. 

You must firs t insert a Time Manager task into the Time Manager's 
queue using either the InsTime or InsXTime system call. With either call, 
you must pass a pointer to a Time Manager task record. This record con
tains a pointer to the task that will be execu ted by the Time Manager a t 
the specified time. Use the InsTime call if you only need the features of 
the initial version of the Time Manager. In this case, you would pass a 
pointer to a task record of the initial structure. If you need the new fea
tures, use InsXTime and pass a pointer to a new task record structure. 
These calls only add the task record to the queue; they do no t schedule 
the task. 

Call PrimeTime to schedule or reschedule a Time Manager task that 
has been previously queued. You need to pass a pointer to a task record 
(which can be either the initial or new structure) and a time count. This 
time count tells the Time Manager when to firs t execute the task. If this 
count is positive, the count is in milliseconds. If it is nega tive, it is in 
microseconds. If it is 0, the routine is executed as soon as interrupts are 
enabled. 

You should remove tasks from the Time Manager's queue with the 
RmvTime call. You need to pass a pointer to the task record to be 
removed. Time Manager tasks are removed whether or not they've been 
scheduled and whether or not they have executed. This call returns the 
amount of time remaining before the task would have been executed in 
the task record. If this count is 0, the task has been executed. If the count 
is negative, then the number is in microseconds, and if it positive, it is in 
milliseconds. 

~ Measuring Time Intervals 

At various times, you need to accurately measure a time interval. You 
need to know how long a user takes to perform a task, or h ow long it 
takes to send a message to another machine over a complex network. 

You can accurately measure time intervals with the Time Manager. Do 



306 .,.. Chapter 17 Processes 

this by installing a task with the InsTime call, or use InsXTime for the 
most accuracy. Call PrimeTime at the start of the interval to be mea
sured, and specify a time count longer than the interval you are measur
ing. When the interval is over, call RmvTime. The task record will 
contain the remainder of the time before the task would have been exe
cuted. The difference between this value and the starting value tells you 
the elapsed time . 

..,.. Conclusion 

Get Info .,. 

In this chapter, you've looked at thl'ee managers associated with pro
cesses and multitasking on the Macintosh. Although the operating system 
does not yet provide preemptive multitasking, simpler forms are available 
today. You can now create multiple applications that can run at the same 
time and that can exchange messages using AppleEvents, interapplication 
communication, and low-level program-to-program communications. 
This will make it easier to develop complex applications as a set of sim
pler, cooperating applications. 

For more information on the Process Manager, read the Process 
Manager chapter in Inside Macintosh, Volume VI. This chapter con
tains a more detailed explanation of how processes are scheduled 
and some options for controlling them. Also, refer to the Event 
Manager chapter in Inside Macintosh, Volume VI for more informa
tion about the WaitNextEvent call. 

For more information on the Notification Manager, read the 
Notification Manager chapter in Inside Macintosh, Volume VI. Note 
that the APDA publication The Programmer's Guide to MultiFinder 
is obsolete with respect to System 7. You'll still need it if you're 
developing for System 6, however. 

For more information on the Time Manager, read the Time Man
ager chapter in Inside Macintosh, Volume VI. This chapter explains 
in detail how you can pass a reference to your application's AS 
world to a Time Manager task. For more information about the 
other time-related services available on the Macintosh, read the 
Vertical Retrace Manager chapters in Inside Macintosh, Volumes II 
and V. 



18 ~ The File System 

Note Ill-

.,.. Introduction 

Over the years, the file system of the Macintosh operating system has 
grown from the Macintosh File System (MFS) on the first version of the 
Macintosh operating system to the Hierarchical File System (HFS), which 
was introduced simultaneously with the Macintosh Plus. 

MFS was actually a flat-file system, although it simulated a direc
tory system. As larger disks became more common, the perfor
mance of the MFS got worse and worse. This led to the 
development of the HFS. MFS is used only occasionally today, but 
is often seen only on 400K (single-sided) floppies. 

HFS brought significant improvements in performance over MFS. 
HFS, the predominant file system used on Macintosh computers 
today, is the default file system for 800K (double-sided) and 1.4Mb 
(high-density, double-sided) floppies as well as for hard disks. 

System 7 brings several improvements in the file system, which you'll 
look at in turn: file IDs, which allow applications to track files (on a single 
volume) over changes in name and location; FSSpec records, which sim
plify the task of specifying files; a single system call that searches the 
directory of a volume for files meeting various criteria; and the numerous 
new routines added to the File Manager to maintain consistency with 
older sets of calls. 

307 



308 ..,.. Chapter 18 The File System 

You'll then look at some changes to the Resource Manager that affect 
resource files. 

Then you'll look at another user-visible change in the file system: 
aliases. An alias is a file that provides a reference to another file. The alias 
behaves much like the file it references, but it allows the file to appear in 
multiple places. 

Next, you'll look at the improvements to the Standard File Package. 
This package is used by almost all applications when a user opens an 
existing file or creates a new file. 

Another significant change in the file system is that all the Finder
related information is now kept in a single database. Apple provides a set 
of calls to read from and write to this database, although applications are 
discouraged from writing to it. You'll look at this database and its associ
ated system calls. 

Yet another change in the file system-one that is quite visible to the 
user-is in the architecture of the System Folder. The System Folder is not 
only the place where the installed System and Finder live, but also where 
almost all operating-system related resources live-printer drivers, net
work and communications drivers, and control panel devices, for exam
ple. Other files that end up in the System Folder include INITs, 
preferences files, temporary files, and the downloadable PostScript font 
files. The architecture introduced with System 7 cleans up the clutter by 
providing a standard set of folders inside the System Folder for various 
categories of these files. 

~ Compatibility and the File and Alias Managers 
The File Manager has many new calls, as described in this chapter. Verify 
that you can use these calls on the current volume by calling PBHGetVol
Parms. This new File Manager routine fills out an HParamBlock record, 
which describes the volume in detail. 

The Alias Manager is available under System 7 and later versions of the 
operating system. To ensure that the Alias Manager is available, you 
should call Gestalt with a selector code of 'alis'. 

~ File IDs 

Under HFS, applications had a difficult time keeping track of files. You 
could keep track of where you last saw a file because you could know 
what directory it lived in and its name. If the user either renamed the file, 
moved it to another folder, or moved the folder in which the file lived, 
then there was no way to relocate that file. 



Important IJJ> 

.... File IDs 309 

Apple recommends that you use aliases in preference to file IDs 
for tracking files on a volume. 

File IDs, introduced as part of System 7, solve most of that problem. An 
application can create a unique file ID for a file, and this number will 
remain associated with that file until the file is deleted, the fil e lD is 
deleted, or the fil e ID is exchanged with one from another file . The last 
case sounds a little strange, but you might want to do this when the user 
"saves" a file so that the latest version of the file maintains the same file 
10. File IDs, which are unique only within a volume, are available only on 
HFS volumes. 

Folders are not affected by this change because folders have unique 
IDs, called directory IDs . (The terms folder and directory are synonymous.) 
You cannot create a fil e ID for a folder. 

..,. Working with File IDs 

File IDs are not created automatically. Your application can check 
whether a file ID already exists for a file by calling PBGetCatlnfo. This 
call returns an HParamBlockRec record, which contains most everything 
there is to know about a file. The HParamBlockRec record has been 
enlarged with the addition of a new param block type FIDParam, which 
contains a pointer to the file's name, the directory ID for the directory in 
which the file lives, and the file ID for the file. 

Call PBCreateFileiDRef to create a file ID. Call PBDeleteFileiDRef to 
delete a file ID. Given a file 10, the call PBResolveFileiDRef returns the 
parent directory ID and the file name for the file with that ID. Since these 
three routines are low-level calls, you'll have to fill out an HParmBlk, the 
standard HFS parameter block, when calling any of these routines. 

Another new system call, PBExchangeFiles, lets you swap both the 
data and resource fork of two specified files, as well as their modification 
dates (in the volume catalog). Restrictions on this call are that both files 
must exist and be on the same volume. File IDs do not have to exist for 
either file, and the call works for open or closed fil es. This call is of special 
use when handling the "Save" and "Save as ... " commands from the user. 
Backup programs should now be using file IDs in preference to file names 
when restoring files from the backup set. FSpExchangeFiles is the corre
sponding high-level call. 

File IDs shouldn' t be used as a way of specifying a file-that's what 
aliases are for (see below). The Alias Manager uses fil e IDs internally, but 
applications are not aware of file IDs from it. 



310 ..,. Chapter 18 The File System 

Four existing HFS routines have been enhanced in System 7 to work with 
file IDs: PBHDelete, PBHRename, PBCatMove, and PBGetCatlnfo . 

..,.. FSSpec Records 
FSSpec records are the new and preferred way to specify fi les. Instead of 
using various and sundry combinations of volume reference number, 
working directory 10, drive number, directory 10, partial pathname, 
andjor full pathname, most routines that deal with files now take FSSpec 
records. 

An FSSpec record consists of a volume reference number, a directory 10, 
and a file name. This means that you cannot use working directory ref
erence numbers and the like to identify an object. Fortunately, the 
FSMakeFSSpec system call can take as input any reasonable combina
tion of volume reference number, working directory 10, drive number, 
d irectory 10, full pathname, partial pathname, and file name. It returns 
the canonical file reference for that fi le, directory, or volume. 

PBMakeFSSpec is the corresponding low-level File Manager call. As is 
usual with these low-level calls, you will have to fi ll out an HParmBlk 
record to use this call . 

..,.. Searching for Files 
Searching for files has been simplified with the PBCatSearch system call. 
Previously, searching a volume for a set of fi les that met a set of criteria 
required an exhaustive search through the volume directory. Most 
searches can now be completed with less work (number of lines of code) 
in less time with this new system call. 

The search criteria are specified in a pair of ClnfoPBRec records and an 
ioSpecBits record that specifies which fields to use as search criteria. 
ClnfoPBRec records are the same structures used with the PBGetCatlnfo 
call. Two copies of this data structure are used by the PBCatSearch call: 
one record to specify the lower bounds for searching, the second for the 
upper bounds. Actually, it's a little more complicated than that, but the 
general idea is that you can search on almost any da ta stored in the file 
directory. This includes file type and crea tor, data fork length, resource 
fork length, and so on. 

Options for the PBCatSearch call include the following: 

• The use of a read buffer to increase performance. A buffer as 
small as lK helps, although 32K is recommended for optimal 
performance. 



II> Other Changes to the File Manager 311 

• A count for the maximum number of matches to return. 

• A maximum count of catalog records to search and a starting posi
tion in the catalog. This feature allows your application to check 
with the user every so often. 

Searching through volumes is a lot easier and faster using PBCatSearch 
than with the old methods. Note the word volume: at this time, you can
not use PBCatSearch to search a folder on a volume . 

.,._ Other Changes to the File Manager 
Call PBGetForeignPrivs and PBSetForeignPrivs to manipulate file 
access information on foreign (non-Macintosh) file systems that use a dif
ferent model of file access, such as the A/UX file system. These low-level 
calls make it easier for sh ell programs (Finder, MPW, and so on) to sup
port the manipulation of files on these other file systems. The new rou
tine, PBHGetVolParms, tells you if the current volume uses an alternate 
privilege model. 

Sys tem 7 brings a new set of File Manager routines that support FSSpec 
records instead of tht! previous (and complex) set of file specification 
parameters. These routines and their older equivalents are listed in 
Table 18-1. 

Table 18-1 . New File Manager routines and their older 
equivalents 

New File 
Manager Routine Older Equivalent Pureose 
FSpOpenRF OpenRF Opens resource fork of a file 
FSpCreate Create Creates a new file 
FSpDirCreate Creates a new directory 
FSpDelete Delete Deletes a file 
FSpGetFinfo GetFinfo Gets Finder information on a fi le 
FSpSetFlnfo SetFlnfo Sets Finder informa tion on a file 
FSpSetFLock SetFLock Locks a file 
FSpRstFLock RstFLock Unlocks a file 
FSpRename Rename Renames a file 
FSpCatMove Moves a file to a new directory 
FSpOpenDF OpenDF Opens the data fork of a file 



312 ..,.. Chapter 18 The File System 

The File Man ager also provides a new routine, HOpenDF, which is the 
HFS equivalent of the OpenDF routine. Also provided is OpenDF, which 
is similar to FSOpen, except that whereas FSOpen can open either a file 
or a device, OpenDF opens only a file. For that reason, you should use 
OpenDF in preference to FSOpen. There are a lso two low-level forms of 
this new call: PBOpenDF and PBHOpenDF. 

Also provided by System 7 are a series of new high-level calls that 
match the low-level HFS calls introduced in Inside Macintosh, Volume IV. 
These are listed in Table 18-2. The new high -level calls are easier to u se, 
since they don't require filling out a complex parameter packet, as the 
lower-level calls require. 

Last, the version of the File Manager in System 7 includes a new set of 
routines, listed in Table 18-3, tha t use directory IDs in place of the older 
MFS function calls. MFS (Macintosh File System) is the original file sys
tem used on Macintosh computers. It is generally encountered only on 

Table 18-2. New high-level HFS calls 

New HFS Call 
AllocContig 

DirCreate 
CatMove 
OpenWD 
CloseWD 
GetWDinfo 

Low-Level HFS Call 
PBAllocContig 

PBDirCreate 
PBCatMove 
PBOpenWD 
PBCloseWD 
PBGetWDinfo 

Purpose 
Allocates a contiguous amount of 
disk space 
Creates a new directory 
Moves a file to a new directory 
Opens a working directory 
Closes a working directory 
Gets information on a working 
directory 

Table 18-3. New HFS equivalent routines for the MFS routines 

New HFS Call MFS Call Purpose 
1-IGetVol Get Vol Gets a volume ID 
HSetVol Set Vol Sets the current volume ID 
HCreate Create Creates a new fi le 
HOpen Open Opens a file 
HOpenRF OpenRF Opens the resource fork of a file 
HDelete Delete Deletes a file 
HSetFLock Set FLock Locks a file 
HRstFLock RstFLock Unlocks a file 
I-I Rename Rename Renames a fi le 
1-lGetFinfo GetFinfo Gets information on a file 
HSetFlnfo SetFinfo Sets information on a fi le 



..,.. Aliases 313 

400K floppy disks these days. The HFS (Hierarchical File System) is the 
current file system used on the Macintosh. These new routines provide an 
HFS equivalent for these older calls. 

Three calls have been added to the File Manager that allow you to 
mount remote volumes without going through the Chooser. Call 
PBGetVolMountlnfoSize to find out how large a record will be required 
to s tore its mounting information. Then allocate a handle of that size and 
call PBGetVolMountlnfo to get the volume's mounting information. 
Last, call PBVolumeMount to mount the volume. 

~ Compatibility and the File Manager 

Before using the new FSSpec routines, verify that they are available by 
calli ng Gestalt with a selector of gestaltFSAttr. This will let you know if it 
is safe to use the new File Manager routines, including those which use 
FSSpec records . 

..,.. Changes to the Resource Manager 
The Resource Manager has been enhanced in System 7 in three ways. 
Numerous sys tem icons and default icons for applications are docu
mented in the Resource Manager chapter of Inside Macintosh, Volume 6. 
The standard resource types are also defined there. 

Second, there are several new system calls that take FSSpec records or 
HFS data. These routines are parallel to exis ting Resource Manager rou
tines. The new routines are named FSpCreateResFile and HCreate
ResFile (the orginal routine is named CreateResFile), and the other set 
are named FSpOpenResFile and HOpenResFile (the orginal routine is 
named OpenResFile). 

Third, there are some new routines which make it easy to read and write 
large resources. Previously you would have to work with the entire 
resource in memory or write some tricky code. These new routines are 
named ReadPartialResource and WritePartialResource. Both routines 
work with a buffer that you supply. Before using either routine, first call 
SetResLoad and specify FALSE so that the Resource Manager does not try 
to load the entire rosource into memory. Call SetResourceSize to change 
the size of a resource on disk. This routine does not write any data to disk . 

..,.. Aliases 
Aliases are alternate names for files, directories, and volumes that provide 
more flexibility for organizing the desktop. For example, some appli
ca tions require several data files (and perhaps some external code in 



314 lill> Chapter 18 The File System 

separate files) to run. Under previous versions of the operating system, 
the user had to remember where all these files were stored. Under System 
7, the user can keep all the files together in one folder and put an alias to 
the application on the desktop (or wherever else the user might keep his 
or her applications). This isn' t an earth-shaking feature, but it's a nice 
feature that some people will find useful in customizing their desktop. 

Aliases are also a useful way of keeping references to dynamic fi les that 
might live on an AppleShare volume. For example, a list of project codes 
for timesheets could be kept on an AppleShare volume. This file could be 
easily updated on the server, and users would not have to remember to 
download the file each time it was changed. 

The Finder (and other applications) let a user create aliases for desktop 
objects (file, directory, or volume). The icon for the alias is the same icon 
used for the object, but the name of the alias is in italics and consists of 
the name of the original object with a suffix of Alias. The alias behaves in 
every other way like the original object. 

The Alias Manager provides routines that allow applications, such as the 
Finder, to work with aliases. These routines allow your applications to 
h·ack files that have been moved, copied, renamed, or restored from a 
backup. 

Aliases are used by several components of System 7. The Finder, the 
most visible user of aliases, allows users to create and manipulate aliases 
to files. Names of files that are aliases show up in italics in the Finder. The 
Edition Manager uses aliases to track edition files for both publishers and 
subscribers. Aliases are used in AppleEvents to name files. The Standard 
File Package and the Finder automatically resolve aliases for applications. 

You should use aliases whenever you save the location of a file or direc
tory. Aliases should replace the use of pathnames, file names, directory 
IDs, and volume names when you're saving the location of a fi le. 

IJil> Alias Records, Canonical File Specifications 

An alias record identifies the desktop object (file, directory, or volume) to 
which the alias refers. AHas records are used as parameters to the Alias 
Manager calls and should not be examined by applications. The only pub
lic data in alias records are the file type of the target and the length of the 
aHas record; all other information is private and is not documented. The 
private information contains volume names, directory names, file names, 
directory IDs, file IDs, creation dates, and AppleShare information. 

You can store your own application-specific data in an alias record. 
After bringing an alias record into memory, use the Memory Manager 
to increase the size of the record. Then add your data to the end of the 



.,.. Aliases 315 

alias record. The Alias Manager will maintain your data at the end of the 
alias record even if the private contents of the record are changed by 
the Alias Manager. Good manners imply that you should add applica
tion-specific data only to alias records that your application has created. If 
more than one application tries to add data to the same record , there is no 
way to guarantee the integrity of the private data in the record. 

Alias records exist only in memory. You must write them to disk (and 
read them from disk) yourself. These can be kept as resources of type 'alis'. 
You can use the Alias Manager routines to create alias records to existing 
files and to resolve alias records to the file to which the alias points. The 
routines of the Alias Manager require the use of FSSpec records, which 
were described earlier in this chapter . 

..,. Calling the Alias Manager 

Call New Alias to create an alias record to a target file. You can optionally 
specify a source file if you want the alias to record a relative path. The 
default is to record absolute path information. Call NewAliasMinimal to 
create an alias record that records only the minimal amount of informa
tion about the target. This means that the alias record includes the volume 
name, volume creation date, parent directory ID, and name of the target. 
You'd use this call when the speed (of resolution) is more important than 
the robustness of the alias resolution, such as when you will be using an 
alias record for a brief period of time. Call NewAliasMinimalFrom
Fullpath to create an alias record that records the full pathname of the 
target (including the volume name). You can also use this call when speed 
is more important than the robustness of the alias resolution-for exam
ple, when the alias record will be used for only a short time and when the 
target of the alias lives on a removable volume. 

Two calls are used to resolve alias records: ResolveAlias and Match
Alias. Call ResolveAlias to get the FSSpec record for a single target or an 
error if the alias cannot be resolved. If the target lives on a mountable 
volume, then ResolveAlias will attempt to mount the volume. You are 
informed if the alias record was updated as a result of this call, but it will 
not be saved automatically. It's up to you to save the updated alias record. 
You can ask the alias to be resolved either absolutely or relatively. 

MatchAlias is a low-level call that takes as input an alias record and a 
set of rules to control the search process. It can resolve an alias record to 
one or more target files in the form of canonical file specifications. You can 
also specify various rules and options that should be used when resolving 
an alias. MatchAlias can also be passed an optional alias-filtering func-



316 .,.. Chapter 18 The File System 

tion that will be called for each possible match or after some time has 
passed ·without a match . 

Call UpdateAlias to update the specified alias record to point to the 
object described by an FSSpec record. You'd do this following a call to 
MatchAlias when you've been told tha t the alias record was changed. If 
you call UpdateAlias and specify a minimal alias record (such as a record 
created by either NewAliasMinimal or NewAliasMinimalFromFull
path), the alias record will be converted to a full alias record. Update
Alias returns a Boolean indicating whether the alias record has been 
changed as a result of this call. 

Some of the information in an alias record can be extracted with the 
GetAliaslnfo call. You can request an object's name, volume name, par
ent folder name, server name, and zone name. The latter two ca tegories 
are returned only if the object lives on an AppleShare volume. 

The File Manager also provides a routine that is helpful when dealing 
with aliases. If you open fi les without using the Standard File Package, 
then it's up to your code to resolve the a lias. If you don' t resolve it, you' ll 
be opening a file with no contents! Call ResolveAliasFile, part of the File 
Manager, in cases when yom application receives an FSSpec record from 
a source other than the Finder or the Standard File Package. If the FSSpec 
record points to an alias, the alias will automatically be resolved for you . 

...., The Standard File Package 

The Standard File Package is used by most applications to provide an 
interface that allows users to do the following: 

• Navigate to a particular directory and select a file to open 

• Navigate to a particular directory and provide the name of a file 
when saving a document 

The Standard File Package has been improved in System 7 to take 
advantage of various improvements and changes in System 7. For pro
grammers, the latest version of this package provides the following: 

• A new pair of routines, StandardPutFile and StandardGetFile, to 
present the two standard dialogs 

• Another new pair of routines, CustomPutFile and CustomGet
File, to present customized versions of the two dialogs 

• A new data structure, StandardFileReply, used by all four of the 
new routines. 



~ The Standard File Package 317 

All of these routines use the FSSpec data sh·ucture, described earlier in 
this chapter. 

The user will notice some changes in the Standard File Package. The 
design of the dialogs has been improved. For example, the previous ver
sions of this package showed only one volume at a time. The System 7 
version shows, a t the topmost level, all objects on the desktop, including 
volumes, files moved to the desktop, and the Trash can. Another example: 
when saving a file, the user can now tab into the scrolling list of files. Any 
keystrokes entered while this list is the active item will scroll the list to 
show the first file that matches those characters. 

Ca ll StandardGetFile to present the user with the s tandard dialog box, 
allowing him or her to select the volume, folder, and file to be opened, as 
illus trated in Figure 18-1. You specify a lis t of fi le types for the files that 
appear in the list and an optional file filter procedure. This procedure is 
called for each file that matches the specified file types, and returns TRUE 
if the file should be displayed or FALSE if not. Rather than specify a list of 
file types to be displayed, you can also ask that all files be displayed; this 
is useful in conjunction with a file filter procedure to select files on some 

D Edition Manager 
D Eppc EHerciser 
D MPW 
D MPWProjects 
0 NetBunny 
D System Folder 
D Task-It 
D temp 
D Uirus tools 

c::J HO 

( f jPe1 ) 

( Desktop ) 

( Cancel ) 

R Open D 

Figure 18-1. The dialog box presented by the StandardGet File 
routine 



318 ~ Chapter 18 The File System 

basis other than simply file type. When the user presses the Open button, 
the StandardGetFile routine returns an FSSpec record, which contains 
the details of the chosen fi le. This data structure was described previously 
in this chapter. 

Call CustomGetFile to present the user with a customized dialog box 
to select a file to open. In addition to specifying all the parameters needed 
for the StandardGetFile routine, you must also specify an optional 
'DLOG' resource ID if you need a nonstandard dialog. Use NIL if you are 
customizing the standard dialog, or another ID if you are creating your 
own dialog. Among the other parameters are pointers to callback func
tions, including a dialog hook procedure (which handles hit items 
returned from the Dialog Manager), a pointer to a modal filter procedure 
(which filters and optionally processes events received from the Event 
Manager), and a pointer to an activation procedure (which controls the 
highlighting of any text fields defined by your code). 

Call StandardPutFile to present the standard dialog box for requesting 
a name and directory when saving a file as illustrated in Figure 18-2. 
Specify a prompt (which is displayed at the top of the dialog box) and an 

0 MPWProjects 
0 NetBunny 
~ B~~ijWi''' 

0 System Folder 
0 Task:-lt 
<il h~aehrmd 
0 temp 
0 Tony's pictures 
0 Uirus tools 

Saue this document as: 

I Untitled 

( fjPt1 ) 

( Desktop ) 

[ New LJ ) 

( Cancel ) 

[ Saue ] 

®EJ o(3 

Figure 18-2. The dialog box presented by the StandardPutFile routine 



..,.. Finder Information and the Desktop Database 319 

optional default name. This routine will return a StandardFileReply 
record when it completes. 

Use the CustomPutFile call to present a customized dialog box for 
requesting a name and directory when saving a file. In addition to the 
parameters mentioned above, you' ll also specify a dialog 10. Use NIL if 
you want to customize the standard dialog, or use another dialog 10 if 
you are creating your own dialog. Among other parameters, you' ll also 
specify pointers to the callback functions . 

..,.. Compatibility and the Standard File Package 

When writing code, use new routines StandardGetFile and CustomGet
File in preference to the older routines SFGetFile and SFPGetFile. The 
same holds true for StandardPutFile and CustomPutFile with respect to 
SFPutFile and SFPPutFile. Before using these four new routines, verify 
that they are available by calling Gestalt with a selector of gestalt
StandardFileAttr. At the release of System 7, the only attribute returned is 
that these four new routines are available or not available. 

But what about applications written prior to System 7? The System 7 
version of the Standard File Package will use the new versions of the 
dialog boxes unless the calls to the older routines use incompatible call
back functions. If you called the older routines, did not use a dialog hook 
or modal dialog filter callback function, and did not specify an alternate 
dialog ID, then the user will see the new dialogs when running under 
System 7. If the new dialogs can be used, then they return the older data 
structures needed for the older routines . 

..,.. Finder Information and the Desktop Database 
Under MFS and HFS, Finder-related information about a file was stored 
in an invisible file called Desktop. Finder-rela ted information includes 
icons, the user's (Get Info) comments, and so on . The only application 
that was supposed to access this file was the Finder. Unfortunately, some
times other applica tions also need access to this information. The Desktop 
file was never documented, and it changed now and then. Application 
developers were forced to disassemble the file to determine its secrets. 
This made life difficult for developers and users, especially when a new 
release of the system changed some of the data structures. 

Under System 7, the fi le system now maintains Finder-related informa
tion in a database. This database can be accessed by a new series of sys
tem calls. Now Apple provides an official way to find this information, 
and it won' t change with minor changes in the structure of the database. 



320 IJI> Chapter 18 The File System 

By the Way ,.., The database containing Finder-related information is not new
AppleShare used an early version of it. Since the old Desktop file 
kept most information in resources, and resources cannot be 
shared by multiple applications, the developers of AppleShare 
were forced to devise a new way of storing this information. 

The new desktop database file is created for volumes larger than 2 
Mb-basically, any volume larger than a floppy. The database file is kept 
on the volume itself if the disk is writable, and on the boot volume if the 
volume is not writable-for a CD, for example . 

.,.. System Calls to Access the Desktop Database 

To access information in the desktop database, you need to open the data
base file. Do tills with the PBDTGetPath routine. Another call, PBDT
Openlnform, performs the same function as the PBDTGetPath call, but 
it also tells you whether the da tabase was already open. There is a PBDT
CloseDown call, but applications do not use it! 

Table 18-4 lists the new system calls that enable you to read, write, or 
dele te information from the desktop database. 

Table 18-4. System calls to access the desktop database 

Dntn Rend Dntn Arid Dntn Remove Dntn 
Icon PBDTAddlcon 
leon description 
File types supported by an 
application 

PBDTGetJcon 
PBDTGetlconJnfo 
PBDTGetAPPL PBDTAddAPPL PBDTRmvAPPL 

User comment PBDTGetComment PBDTSetComment PBDTResetComment 

The icon bitmap calls-PBDTGetlcon and PBDTAddlcon-let you 
access the database for various types of icons, given their signature (creator 
and type). Remember that the Finder uses file creator and type to locate an 
application that can open a file with those types. Call PBDTGetlconlnfo to 
reh·ieve icons associated with a particular application signature. 

The file type calls-PBDTGetAPPL, PBDTAddAPPL, and PBDT
RmvAPPL-give you access to the information connecting applications 
and their signatmes. PBDTGetAPPL returns the details of the applica
tion(s) associated with a particular signature. 

The file comment calls-PBDTGetComment, PBDTSetComment, 



~ Finder Information and the Desktop Database 321 

and PBDTResetComment-give you access to the Get Info comments of 
files and directories. The maximum length of a comment is 199 charac
ters. If you provide a longer comment, it will be truncated. 

One other call is of importance to application writers: PBDTFlush, 
which ensures that any changes made to the desktop database are flushed 
from memory to disk. 

There are three versions of the routines listed in Table 18-4 and of 
PBDTFlush. These routines all take a parameter that controls whether 
the routine will run synchronously or not. There are two other versions of 
each routine (such as PBDTGetlconlnfo) in that table that run synchro
nously (PBDTGetlconinfoSync) and asynchronously (PBDTGetlcon
InfoAsync). The latter two versions of the routine run slightly faster since 
they do not use any glue code . 

..,_ New Icon Types Supported by the Finder 

The Finder now supports many new types of icons for display under dif
ferent circumstances. These new types are listed in Table 18-5. The four 
new color icons do not include a mask-they use the monochrome mask. 
The resource ID of the 'ICN#' governs the resource ID of all other icon 
types. 

Table 18-5. Icon types supported by the Finder 

Reso11rce Tyee Size <eJxels) Contents 
'ICN#' 32 by 32 Large monochrome icon and mask 
'ics#' 16 by 16 Monochrome icon and mask 
'icl4' 32 by 32 Large 4-bit color icon 
'ics4' 16 by 16 4-bit color icon 
'icl8' 32 by 32 Large 8-bit color icon 
'ics8' 16 by 16 Small 8-bit color icon 

Speaking of icons, you may also want to create icons for edition files 
created by your application and, if your application supports stationery, 
for stationery documents . 

..,_ Document String Resources Supported by the Finder 

The Finder, if it cannot find the creator application for a document when 
the user tries to open or print a document, now looks for string resources 
in the document before displaying the default alerts. Your program name 



322 ..,.. Chapter 18 The File System 

should be stored in documents as 1STR 1 resource ID -16396. The Finder 
will use this string when displaying the appropriate alert (such as This 
document could not be opened ... ). 

A message explaining why the user cannot print or open a file should 
be stored in 1STR 1 resource ID - 16397. You should include this resource 
in files, such as preferences files, that the user shouldn' t open or print. If 
the Finder finds a string resource of this type, it will display this message 
rather than its default message . 

..,.. Architecture of the System Folder 

The System Folder, which was originally intended to hold little more than 
the System and Finder, has been used to store increasingly more files. It is 
not uncommon to find over a hundred files in this folder. System 7 intro
duces an architecture to create some order out of this chaos. 

System-related folders were introduced with System 7. They are all 
located inside the System Folder unless noted otherwise in the following 
list: 

• Preferences-Contains application preference files . Information that 
will be shared over a network should not be stored in this folder. 

• Temporan; Hems-Contains temporary files created by applications. 
This folder is invisible to users and is located at the root level of 
the volume. 

• Extensions-Contains INITs, printer drivers, AppleShare, and other 
code that provides system services. 

• Apple Mwu Items-Contains desk accessories, applications, files, 
and folders that the user wants to see in the Apple menu. When 
the user selects an item from the Apple menu, the Finder opens 
that item. 

• Control Panels-Contains cdevs (control panel devices). 

• Startup Items-Contains applications and desk accessories that the 
user wants launched at system startup time. 

• PrintMonitor Documents-Contains spooled documents awaiting 
printing. 

• Desktop Folder-Contains the contents of the desktop. This allows 
the desktop to behave like just another folder. This folder is invisi
ble to users on the desktop, but appears at the root in the standard 
file dialogs. 



..,. Architecture of the System Folder 323 

• Trash-Holds files and directories that the user has placed in the 
Trash can. The trash is emptied only on the user's request. This 
change makes the Trash can behave like any other folder. If the 
Macintosh is running in a shared environment, then there is a 
shared Trash folder, which contains a separate Trash folder for 
each authorized user. This folder appears to users a t the root of 
the file system in the standard file dia logs. 

• System-This file also contains the system software. It behaves as a 
folder with respect to fonts, sounds, and other movable resources. 

• Communications Folder- Contains connection, file transfer and ter
minal tools for use by the Communica tions Toolbox. 

• Rescued Items from volume name-Contains items which were in 
the Temporary Items folder prior to a system crash. 

A volume can have at most one of each of these system-related folders. 
The names of these folders are internationalized, so they are different in 
different countries. However, each of these folders has a different file 
type, so they are uniquely identified no matter which language is used to 
name them. Now let's look a t hm·v this architecture affects application 
software. 

Of these system-related folders, only the Preferences and Temporary 
folders are normally of interest to applications. For the most part, the user 
and the Installer only modify the contents of the other folders . 

.,.. Locating the Preferences and Temporary Folders 

You can locate the Preferences or the Temporary folder (or any of the 
other special folders) by using a new system call, FindFolder. You pass 
the folder type of the folder you 're trying to find to the call, and it returns 
the volume reference number and directory ID for the folder. You can also 
specify whether the folder should be created if it does not exist. 

The Preferences and Temporary folders are the obvious place to create 
and store a preferences file and any temporary files that your applica tion 
needs. If you create a temporary file, be careful to delete it when it is no 
longer needed. If the application does not delete it, the space will not be 
reclaimed because the user won' t be able to see the temporary file, let 
a lone delete it. 

Before using the new FindFolder routine, verify that it is available by 
calling Gestalt with a selector of gestaltFindFolderAttr. At the release of 
System 7, the only ath·ibute returned is th at this new routine is available 
or not available. 



324 ..,.. Chapter 18 The File System 

.,.. Conclusion 

Get Info ..,. 

In this chapter, you've looked at the changes System 7 has brought to the 
File Manager. The most important changes for application writers are the 
following. 

• File IDs-Provide a "sticky" way to uniquely identify files on a 
volume 

• FSSpec records-Simplify the specification of files 

• The PBSearchCat system call-Provides a fast, controllable 
method of searching for files with a variety of criteria on a volume 

• Many new calls to the File Manager-Maintain consistency 
between the various sets of File Manager calls 

You 've also looked at aliases, a new operating-system feature added 
with System 7. Aliases provide a way to give additional names to existing 
file system objects. 

The Standard File Package has been improved, with several new rou
tines that provide access to the new dialogs. Customizing these dialogs is 
easier using these new calls. 

The Finder maintains file-related information in a database. Applica
tions now have access to this information through a new set of routines. 

For more information on the File Manager, refer to the File Man
ager chapter of Inside Macintosh, Volume VI. You may also want to 
refer to the File Manager chapters of Inside Macintosh, Volumes I, 
IV, and V. 

For more information on the changes to the Resource Manager, 
refer to the Resource Manager chapter of Inside Macintosh , 
Volume VI. 

For more information on the Finderlnterface, refer to the Finder 
Interface chapter of Inside Maci11tosh, Volume VI. 

For more information on the Alias Manager, refer to the Alias 
Manager chapter of Inside Macintosh, Volume VI. 

For more information on the Standard File Package, refer to the 
Standard File Package chapter of Inside Macintosh, Volume VI. You 
may also want to refer to the Standard File Package chapters of 
Inside Macintosh, Volumes I and IV. 



19 ~ The Hardware Managers 

~ Introduction 

In this chapter, you will look at two managers associated with managing 
the Macintosh hardware, both of which were revised for System 7. 

You'll first look at the changes that System 7 brings to the Slot Man
ager. This manager provides a standard interface to talk with NuBus cards 
and is therefore primarily of interest to programmers writing NuBus 
device drivers and other low-level code. Applications should never need 
to talk directly with a NuBus card, and so it is covered only briefly in this 
book. 

Then you' ll move on to the Power Manager, which was introduced 
with System 6.0.4 and the release of the Macintosh Portable. The Power 
Manager provides control over the state of the electrical power to the 
computer for applications and drivers. It is primarily of interest to pro
grammers writing device drivers for the Portable, so it is covered briefly. 

~ The Slot Manager 
The Slot Manager provides a programming interface to NuBus cards. The 
routines that make up this manager are of interest to programmers writ
ing device drivers. Occasionally, applications need to directly talk to 
NuBus cards, but this is unusual. The safest way for applications to talk 
with cards is through a device driver. To talk with a card directly, the 
application must change when the hardware changes. The purpose of a 
device driver is to insulate applications from these kinds of changes. 

325 



326 .,.. Chapter 19 The Hardware Managers 

The changes to the Slot Manager in System 7 are primarily changes to 
handle cards that need to be addressed in 32-bit mode. This version of the 
Slot Manager was available in late versions of System 6. The previous 
version of the Slot Manager could talk with cards only in 24-bit mode. 

~ Slot Manager and the Initialization Process 

When the Slot Manager is initialized as part of the system initialization 
process, it looks for an sResource (slot resource) on each card. This 
resource tells the Slot Manager where to find the driver for its card and so 
on. While checking for a card in each NuBus slot, the Slot Manager 
assembles a Slot Resource Table, which contains references to a ll the 
sResources it finds. 

After the Slot Resource Table has been created, the Slot Manager initial
izes the parameter RAM on each NuBus card and executes the initializa
tion code for the card. This code is in a Primarylnit record, the location of 
which is stored in the sResource. 

The initial version of the Slot Manager in early members of the Macin
tosh II family could only address boards in 24-bit mode. Many new 
NuBus cards need to be addressed in 32-bit mode, and the new Slot Man
ager can do this. It does complicate the initialization process, though. 
Let's look at how the initialization process happens now. Two cases can 
happen under System 7: The new Slot Manager is in ROM or the old Slot 
Manager is in ROM. 

The first case, where the new Slot Manager is located in ROM, has just 
been described. The new Slot Manager can initialize cards in 32-bit mode 
or 24-bit mode. 

The second case, when an old version of the Slot Manager is in ROM, is 
more complicated. The old Slot Manager initializes a ll the NuBus cards 
tha t can be initialized in 24-bit mode. After the operating system is 
installed and patches to the system are installed, the RAM-based version 
of the Slot Manager is called. This manager looks at the NuBus cards a 
second time, looking for cards that need to be initialized in 32-bit mode. 
When it finds such a card, the manager adds its sResource to the Slot 
Resource Table, initializes the parameter RAM, and executes the Primary
Init (initialization code). 

In either case, following this phase of initialization, the Slot Manager 
looks through all the NuBus cards again, this time looking for Secondary
mit records, which have the same structure as Primary !nit records. Secon
darylnit records allow cards to be initialized later on during the system 
initialization process. The new Slot Manager allows you to avoid initializ
ing a card until the secondary initialization. This is useful, for example, 



.,. The Power Manager 327 

because a 32-bit video card should be initialized after 32-bit QuickDraw is 
installed. 

~ Compatibility and the Slot Manager 

System 7 introduces a new call, sVersion, which returns the version of 
the Slot Manager. The new RAM-based version of the System 7 Slot 
Manager returns 1, and the new ROM-based version returns 2. Previous 
versions of the Slot Manager do not recognize this call and return a non
fatal error. 

Gestalt now provides a simple way of finding what NuBus slots, if any, 
exist on the current machine. Call Gestalt with a selector of gestalt
NuBusConnectors. A bit is set for each NuBus slot that exists on the 
machine. This therefore tells you the slot addresses available. Note that this 
does not tell you if cards are installed in the slots. 

~ New Slot Manager Routines 

The new and revised routines of the Slot Manager allow you to perform 
four new functions. 

• Disable a NuBus card during the primary initialization process and 
then reenable the card during the secondary initialization process 

• Search for disabled sResources 

• Enable and disable sResources 
• Restore an sResource that was deleted from the Slot Resource 

Table (for example, one that was deleted during the primary ini
tialization process) 

Once again, these routines are primarily for device drivers and not for 
applications . 

...,. The Power Manager 
The Power Manager gives applications and device drivers some control 
over the electrical power and related functions on the Macintosh Port
able. This is needed because the Portable is always running off its internal 
battery or off a plug-in current. The Portable does not have an on j off 
switch. 

The Portable has three power states: active, idle, or sleep. The latter 
two are low power-consumption states. In the idle state, the CPU clock 



328 "" Chapter 19 The Hardware Managers 

has been slowed to lMHz. In the sleep state, the power has been shut off 
for the CPU, RAM, ROM, and all peripherals. When the user selects Shut 
Down from the Special menu, the Portable enters the sleep state . Note 
that the Portable is always electrically "on"; even the sleep state con
sumes a little power. Applications can remain open during any of these 
three states, although currently some applications do have problems in 
the idle or sleep states. 

Your code can control the Power Manager by means of the sleep queue, 
which contains a list of procedures to be called before the Portable can be 
put to sleep or before it is fully awakened. These procedures perform 
whatever is required to prepare for the sleep state. 

You can use three types of sleep requests and demands: conditional and 
unconditional sleep demands, and sleep requests. During a sleep request, 
the Power Manager checks with all other procedures in the sleep queue to 
see if all of these routines will accept the sleep request. If all of them do 
accept and the network (AppleTalk) drivers also accept, then the Power 
Manager walks through the queue a second time and sends each routine a 
sleep demand. If any of the routines denies the sleep request, then the 
request is canceled. 

On a demand to sleep, each routine prepares for the sleep state as best it 
can. A conditional sleep demand can be canceled only if the network driv
ers don't want to sleep. In this case, the user is presented with a dialog box 
allowing him or her to decide whether the machine should enter the sleep 
state. Your drivers and applications cannot deny a sleep demand. They 
must prepare for the sleep state as expeditiously as possible. 

When the machine wakes up, each routine in the sleep queue is called 
to restore state. 

You can use the Power Manager to do the following: 

• Request or demand that the computer be put into the sleep state 

• Enable, disable, or delay the transition to the idle state 

• Add an entry to or remove an entry from the sleep queue 

• Get the current clock speed 

• Check on the status of the battery and the battery charger 
• Control power to the internal modem and serial ports 
• Enable, disable, or check on the status of the wakeup timer (which 

controls a timer that awakens the machine at the specified time) 

The Power Manager is primarily of interest to programmers writing 
device drivers. Some applications may be affected by the transition to the 



..,.. Conclusion 329 

idle or sleep s tate, and these applications may also need to use the Power 
Manager. You could also use this manager to write Portable-specifi c 
applications or utilities. 

~ Conclusion 

Get Info .,.. 

In this chapter, you've looked at changes to two low-level managers: the 
Slot Manager and the Power Manager. The Slot Manager provides access 
to NuBus cards. Improvements to this manager provide for talking with 
cards in 32-bit mode, in addition to the previously supported 24-bit 
mode. 

The Power Manager provides access to and control of electrical power 
on the Macintosh Portable. This manager is primarily used by device 
drivers, but some applica tions peculiar to the Portable may need to use it 
as well. · 

For more information on the Slot Manager, refer to the Slot Man
ager chapters of Inside Macintosh, Volumes V and VI. You will 
probably also need to read Designing Cards and Drivers for the Mac
intosh II Family (Addison-Wesley, 1990), and the Device Driver 
chapters of Inside Macintosh, Volumes II, IV, and V. 

For more information on the Power Manager, refer to the Power 
Manager chapter of Inside Macintosh, Volume VI. 



20 ~ Object-Oriented 
Programming and System 7 

..,_ Introduction 

By the Way~ I 

Even before System 7 arrived, the Macintosh operating system was con
siderably more complex than, say, MS-DOS. This was true for both the 
total number of system calls and the level of sophistication of the services 
provided by the operating system. Consequently, developing Macintosh 
application software has always required a higher skill level from pro
grammers than does developing software for MS-DOS or similar micro
computer operating systems. 

System 7 increases the level and number of operating-system services. 
This won ' t make life any easier for programmers. In this chapter, you'll 
look at an important programming method that can make life easier for 
programmers: object-oriented programming. You'll then look briefly at 
MacApp, which is Apple's premier object-oriented framework for devel
oping applications. 

The one "advantage" of using object-oriented programming rather 
than object programming is that more bad puns and acronyms are 
possible with the former. 

Object-Oriented Programming 
Programming is, for the most part, no longer about minimizing bits and 
microseconds . Although programmers cannot be profligate in using 
resources such as memory and CPU cycles, other concerns are now more 

331 



332 II'- Chapter 20 Object-Oriented Programming and System 7 

important. One of the most important problems is how to provide fu ll
featured applications that are easy to Jearn and to use, but s till p rovide 
access to the full power in the application. Many of these applications 
have twice as many, five times as many, or even ten times as many fea
tures as their equivalents from ten years ago. Spreadsheets and word 
processors provide some of the more dramatic examples. For example, 
contrast the first version of MacWrite with the latest version of Microsoft 
Word. 

How can developers provide all these features to users and not get 
bogged down by all the details? The fundamental problem here is manag
ing complexity. System 7 offers a prime example of the complexity with 
which programmers must deal. The original version of the Macintosh 
opera ting system had an order of magnitude more system calls than did 
MS-DOS. Even then, the Macintosh opera ting system offered roughly the 
same number of services as typical minicomputer operating systems such 
as VAX/VMS and UNIX. System 7 adds an enormous number of system 
calls to the Macintosh operating system. Future versions can be expected 
to add even more. What's a programmer to do? 

Another increasingly common problem is that as applications grow 
larger and larger, it becomes increasingly more difficult for one program
mer to understand it all, le t alone do it a ll. The promise of object-oriented 
programming is that it provides some technology to help programmers 
manage complexity. It is most definitely not going to cm e all software ills, 
but it is proving helpful to those who have adopted it. 

Two concepts provide the foundation for object-oriented programming: 
objects and inheritance. An object provides a framework that holds a data 
structure and the procedmes that know anything about this data struc
ture. Object-oriented programming therefore means structuring software 
primarily around data and not, as is the case with procedural program
ming, around the processes to which you subject the data. Objects are 
said to contain instance variables (data structures) and methods (proce
dures that operate on the data sh·uctmes). Well-designed objects encapsu
late the data, so that if the internal structure of the data changes, ideally, 
only its associated methods (and no other code anywhere else) will 
change. 

Inheritance provides a powerful mechanism for reusing code. The idea 
behind inheritance is that you can create new kinds of objects by describ
ing how they differ from an existing object. The differences might include 
new data structures, new methods, or different behavior from a method 
defined in the original object. A new object is said to inherit from its 
ancestral object. 

Object-oriented programming requires a new way of doing things. 



~ Object-Oriented Programming 333 

Software design is different when you program with objects rather than 
with procedures. Also, object-oriented programming uses an object lan
guage, an application framework, and a development system that sup
ports objects. This triad is illustrated in Figure 20-1. Each element in the 
triad is related to the other two elements. The programming language is 
used to write the application framework and your own code. The applica
tion framework provides a platform that implements the standard behav
iors required of a Macintosh application. The development environment 
provides tools that understand objects. 

Figure 20-l . The object triad 

To use object-oriented programming, you do not have to start learning 
everything from scratch again. You do, however, have to learn a new way 
of thinking about how applications are designed and implemented. The 
techniques of designing with objects are different from designing with 
procedural languages such as Pascal or C. Implementation techniques are 
also different. Much of what you already know is still applicable, though. 

Of course, object-oriented programming isn' t the only way to program. 
You have access to all the features of System 7 from C, Pascal, assembly 
language, Modula-2, Fortran, and other procedural languages. If you are 
working on a revision of an existing application, you'll probably continue 
working from the last revision. Object technology cannot easily be retro
fitted into software developed using procedural languages. 



334 ~ Chapter 20 Object-Oriented Programming and System 7 

Note ~ The term object-oriented programming is used in contrast to object
based programming. Object-based programming describes program
ming in languages that provide objects, but not inheritance. Exam
ples of such languages include Ada and CLU. Object-oriented 
languages, on the other hand, provide both objects and 
inheritance . 

...,. What Is MacApp? 

MacApp is an applications framework written in Object Pascal. It is not a 
programming language, although it can be used with either Object Pas
cal, C++, or Object Modula-2. It is not a development system; in fact, it 
can be used with either the Apple MPW or Symantec's THINK Pascal 
environment. 

MacApp is a mature application framework. Apple has been working 
on it since 1985, and Apple has been doing work on object technology 
since 1982. MacApp 2.0, the version shipping at the time this book was 
written, offers an improved architecture over the original version. The 
architecture of version 2 was derived from many suggestions from pro
grammers who used the earlier versions of the framework. 

MacApp 2.0 ships >vith two tools that make life easier for object pro
grammers: ViewEdit and MacBrowse. ViewEdit allows you to draw com
plex windows and dialogs and to get them up and running quickly. A 
complex window that might take a week to do in Pascal might take a day 
to do using ViewEdit and MacApp. MacBrowse is a source-code browser 
with some editing capabilities. It will help you answer questions such as 
"Show me all the methods and instance variables for this object" and 
"Show me all the objects that use this method." It provides an important 
navigational tool for working in the many megabytes of source code. 

More and more commercial and in-house applications are being written 
using MacApp. Some of the commercial applications that were shipping 
when this book was written include the following: 

• Odesta: GeoQuery-Database query program 
• SoftQuad: AuthorjEditor-SGML structured text editor 
• Analyst Workbench Products: Data Modeler-CASE tool 

• Data Translation: PhotoMac-24-bit color separation software 
• Icon Technology: Formulator-WYSIWYG mathematics word 

processor 



By the Way.,., 

II> But What about Performance and Memory? 335 

• Apple: MacTerminal version 3-Communications program 

• DigiDesign: Q-Sheet-Real-time music p rogram 

• Olduvai: Read-lt!-Optical character recognition (OCR) program 

• Adobe Systems: PhotoShop-Color image processing software 

You can tell if an application was written using MacApp by look
ing at its "About..." box. One of the terms of the MacApp licensing 
agreement is that developers must mention MacApp in the 
"About..." box and manual. 

Version 3.0 of MacApp provides support for many System 7 features 
such as AppleEvents and the Help Manager. Apple is strongly committed 
to updating MacApp as the operating system evolves. If you 're using 
MacApp, this makes your job as an application programmer easier. 
Instead of having to make numerous nontrivia l changes to take advan
tage of the evolving operating system, you can take advantage of all the 
hard work tha t the MacApp programmers have put into it. 

..,. But What about Performance and Memory? 
The traditional excuses for not using object-oriented programming are 
that it uses too much memory and too much disk space, and that it's too 
slow for anything but prototypes. These objections are based on old s te
reotypes of Smalltalk and LISP. This just isn 't true anymore- n ot for 
Smalltalk or LISP, and especially not for Object Pascal and C++. 

The amount of memory required by an application written with Mac
App using Object Pascal and jor C++ to run is n o more than that 
required by an application written using Cor Pascal. This is because Mac
App is exceptionally well-written code and because the compilers for the 
two object languages are good. 

The amount of disk space required for a MacApp application is the 
same as for an application written in a procedural language. The only 
time this rule is not true is if the application is tiny. The MacApp-based 
application will be larger than an application written in a procedural lan
guage, unless you do some additional work to reduce the amount of code 
linked into the application. 

Last, speed is not an issue for MacApp applications any more than it is 
for applications written in a procedural language. This is because compil
ers and linkers are good a t producing high-quality code. You could write 



336 .,.. Chapter 20 Object-Oriented Programming end System 7 

slow code, but you can do this in a procedural language, too. Unless you 
are writing " hard" real-time code, there is probably no reason why you 
couldn't use MacApp. 

The traditional excuses for avoiding object technology are no longer 
valid. If you want to continue avoiding it, you'll have to find a new excuse . 

..,. When to Use MacApp 
However, MacApp is a tool to consider if the following conditions hold 
true: 

• You're writing an application that deals in complex data rela tion
ships-MacApp is especially suitable for " traditional" Macintosh 
applications such as MacWrite and MacPaint. In these applications, 
there is a simple, one-to-one relationship between a file, a docu
ment, and a window. Applications with more complex relation
ships, such as accounting packages and databases, require more 
work on your part than these previous types of applications. 

• You're writing an application that requires real-time performance
MacApp has been successfully used for some "soft" real-tjme 
applications, but it is not suitable (with version 2.1) for use in 
developing "hard" real-time applications. 

MacApp is the tool of first choice if you're writing an application from 
scratch and you don't have "hard" real-time requirements . 

..,. When Not to Use MacApp 
Although MacApp isn' t useful for everyone, it's still easier to explain 
when not to use MacApp than to explain when to use it. If you're in any 
of the following situations, then MacApp is probably not the best choice: 

• You have an existing application written with a procedural lan
guage-The architecture of applications written using MacApp is so 
different from that of applications wl'itten in procedural languages 
(C Pascat assembly language, and so on) that it's just not possible 
to retrofit MacApp into such applications. If your existing code is 
primarily a computational engine, however, you can put a MacApp 
wrapper around it to handle the user interface and inputjoutput. 

• You're writing device drivers and other low-level code-Although 
you can write drivers using C++, you cannot write low-level sys-



..,. Resources for MacApp Programmers 337 

tern code using MacApp. MacApp is an application framework, not 
a generic framework for every type of code. 

• You're writing an application that will be ported to other operating 
systems and other user interfaces-The MacApp architecture was 
designed solely for the Macintosh . 

...,.. Resources for MacApp Programmers 
MacApp is available from APDA, the Apple Programmer's and Devel
oper's Association. This is a mail-order house, run by Apple Computer, 
that sells all of Apple's developer tools and publications and many third
party developer tools. To purchase anything from APDA, you must join 
by filling out an application and paying an annual fee. Because APDA 
sells beta versions to get the tools out to developers as quickly as possible, 
this application and annual fee are required. As soon as a released version 
of a tool is available, APDA stops selling the beta version and sells only 
the final version. Usually, APDA automatically sends you the final ver
sion of a product if you've purchased a beta version. 

If you distribute an application written with MacApp, you'll also have 
to sign a licensing agreement with the Software Licensing department at 
Apple. This is true whether the application is a commercial application, 
an internal application, or shareware. The licensing fee is small ($10/year 
for sh areware, $100 jyear for everything else) and covers all of your 
MacApp applications. 

If you are not interested in any beta versions of tools, you can alterna
tively purchase the final versions of tools through Developer Express. You 
need not sign an agreement or pay an annual fee to purchase through this 
program. 

Another important resource is MADA, the MacApp Developer's Asso
ciation. This nonprofit group was formed by developers and program
mers who use MacApp. The group publishes a newsletter, Frameworks, 
which appears six times a year. Several products (including source code 
for most) are available for both members and nonmembers. Last, the 
group holds an annual MacApp Developer's Conference, which runs for 
five days and includes several days of tutorials and workshops followed 
by the general sessions. For more information about this group, you can 
write to MADA, P.O. Box 23, Everett, WA 98203, or send an AppleLink to 
MAD A. 



338 ~ Chapter 20 Object-Oriented Programming and System 7 

~ Conclusion 

Get Info 11> 

Object-oriented programming is where all Macintosh developers are 
headed. It isn' t going to solve all of our software problems, but it is a step 
in the right direction. Just as structured programming was the buzzword of 
the 70s, object-oriented programming will be the buzzword of the 90s. 
Even if you can't use it on your current project, learn about it now. You'll 
be using it in the future. 

MacApp is one of the most reasonable ways to develop software on the 
Macintosh. Programmers maintaining existing applications might have 
little reason to use it now, but almost all programmers working on new 
applications should consider MacApp. 

This chapter has provided a deliberate simplification of the issues 
in object-oriented programming. For an excellent introduction to 
object-oriented programming and MacApp, look for Programming 
with MacApp (Addison-Wesley, 1990) by David Wilson, Larry 
Rosenstein, and Dan Shafer. This book is available in both Object 
Pascal and C++ flavors, and is part of the Macintosh Inside Out 
series. 



21 ~ The Future 

~ Introduction 

In this chapter, you' ll look at three aspects of the future of the Macintosh 
operating system. First, you'll look at operating-system features that have 
been previously mentioned by Apple as candidates for inclusion in Sys
tem 7. Then you'll look at features mentioned (also by Apple) as future 
capabilities of the operating system. Last, you' ll look at where the Macin
tosh operating system is heading in the long term. 

~ Some Future Features 
Apple introduced the concepts behind System 7 a t the 1989 Worldwide 
Developer's Conference, held in San Jose, California, in May 1989. At this 
conference, Apple went through a long list of enhancements and addi
tions to the Macintosh operating system. 

Th e first widely distributed version of System 7 (version 7.0a9) was 
handed to developers a t the 1990 Worldwide Developer's Conference, 
held in San Jose, California, in May 1990. During this one-year period, 
quite a few features announced in 1989 didn't make it into System 7. This 
was done to make it easier to ship System 7, and most or all of these 
features will probably be added in later versions of th e Macintosh operat
ing system. This section covers the features that missed the System 7 boat. 

339 



340 .,.. Chapter 21 The Future 

.,. New Print Architecture 

The print architecture of the Macintosh operating system is badly in need 
of repair. Printer drivers were never (and still are not) fully documented, 
so writing and maintaining the code for a new printer (or other output 
device) on the Macintosh is a grueling task. A new print architecture is on 
its way. It will provide background printing, color support, and halftone 
support for all output devices. Documents will be independent of the out
put device, so a spooled file can be redirected to another type of printer 
without going back to the application. Custom page sizes will be much 
easier to create by users, applications, and drivers. A single document 
could contain more than one page size and more than one page orienta
tion. The new architecture will also make it considerably easier to write 
printer drivers . 

.,. File System Manager 

A File System Manager will provide support for non-Macintosh file sys
tems, such as MS-DOS, OS/2, ProDOS, and UNIX. Users will be able to 
mount disks formatted with non-Macintosh file systems. This manager 
will also allow a Macintosh to initialize a volume with one of these for
eign file systems. These capabilities will clearly make it a lot easier to 
exchange data with other platforms . 

.,. Layout Manager 

The Layout Manager will be introduced to provide powerful text layout 
services . It will be much more powerful than TextEdit, which provides 
more rudimentary services. The Layout Manager will provide typo
graphic-quality output by providing such features as justification, frac
tional positioning of characters, kerning, and ligatures. It will also directly 
support the contextual forms required for some non-Roman scripts. This 
will make it easier for programmers to develop international software . 

.,. Revised SCSI Manager 

A new version of the SCSI Manager will be introduced. It will feature 
support for asynchronous operations and support for direct memory 
access (DMA). It will also support the disconnection and reselection of 
SCSI devices. The new SCSI Manager will provide an implementa tion 
much closer to the AN SI standard than the previous version. 



..,.. Definite Futures 341 

..,. Definite Futures 
Various people from Apple Computer have talked at developer's confer
ences about several other capabilities to be added in the Macintosh oper
ating system. 

~ AppleScript 

AppleScript is a scripting language that will allow users to control their 
applications and the system. It will be based on HyperTalk, interapplica
tion communications, and AppleEvents. 

~ Apple Event Object Model 

To provide a consistent architecture for using Apple events, both at the 
programmer and user (AppleScript) levels, a model for Apple events is 
required. The content of an Apple event is a request to perform some 
action on an object. The Apple event object model will describe how 
objects are both structured and accessed. Objects belong to a class. 
Objects have a set of properties, which define its nature, and a set of 
elements, which define its content. 

~ Memory Protec tion and Multiple Address Spaces 

Memory protection and multiple address spaces would keep the system and 
each process (application or desk accessory) in its own memory space. 
Code in one partition would be prohibited from reading from or writing 
to any other partition 's memory. This would prevent one application from 
crashing the system or another application. 

~ Preemptive Multitasking 

Preemptive multitasking will provide more powerful multitasking capabili
ties than System 7. Under System 7, MultiFinder was completely absorbed 
into th e operating system, but it still provides only cooperative multitask
ing capabili ties. Every application that runs under System 7 depends on 
every other application to be well-behaved. Background tasks must be 
good citizens and cannot use much CPU time when the foreground appli
cation is running. These capabilities provide most of the multitasking that's 
needed for most of the functions that users need today, such as back
ground printing and long calculations. A more powerful form of multitask
ing is needed for more powerful kinds of applications. As an example, 



342 .,. Chapter 21 The Future 

consider database applications. By having preemptive multitasking, you'd 
be able to separate the front end (the user interface), which operates at a 
human time scale, from the back end, which needs all the CPU time and 
resources it can get 'vvhen processing a request. 

..,. Multimedia Support 

Multimedia support will be added to the Macintosh operating system. This 
will mean that video, audio, and animation capabilities will become much 
more available than they are today. Three-dimensional graphics will be 
part of this. Currently, QuickDraw provides drawing capabilities in two 
dimensions only. To present images of three-dimensional objects today, 
you have few alternatives except to develop the three-dimensional graph
ics routines on your own. This new multimedia architecture is called 
QuickTime, by analogy with QuickDraw. QuickTime will offer the follow
ing features. 

• Support for data types such as video and sound, such as real-time 
compression and decompression 

• A media-compatible document architecture that can deal with 
multiple forms of data in a document, including text, graphics, ani
mation, video, and sound (on other platforms, this would be called 
a compound document architecture) 

• Support for sound input and text-to-speech output 
• Human interface guidelines for dealing with new media 

..,. Network Booting 

Network booting will also be supported by the operating system. This will 
allow a Macintosh to be booted using no local disks. This capability will 
be useful primarily to larger organizations. Occasional users who have a 
machine that boots over the network will use applications stored on a 
server. The process of ensuring that all users have the latest version of 
applications will be simplified by using this technique . 

.,.. Indefinite Futures 

Other features are presumably going to be added someday. These fea
tures have been mentioned by Apple Computer at developer's confer
ences, but few details have been discussed. When these changes will 
occur is not clear, but their benefits are clear. 



"" Conclusion 343 

..,. Revised QuickDraw 

One important change that needs to happen is improvements to Quick
Draw, the drawing engine that is the foundation of the Macintosh operat
ing system. Many applications assume that all displays use the standard 
screen resolution of 72 dots per inch. Every Macintosh shipped so far and 
all third-party video cards and monitors assume a screen resolution of 72 
dpi. Higher screen resolutions are now possible in hardware, but the 
operating system needs to be updated to support other resolutions. 
QuickDraw also needs to be extended to offer functions tha t are not avail
able today, such as rotated text and graduated fills . To keep the Macintosh 
competitive with other platforms, Apple must improve QuickDraw . 

..,. Object-Oriented Programming 

The other important direction for the Macintosh operating system is inte
gration with object-oriented programming tools. Object-oriented tools 
such as MacApp, Object Pascal, and C++ are accelerating application 
development today. Apple needs to improve and develop new object
oriented development tools and environment to remain competitive with 
other platforms. Most of the rest of the industry is adopting object
oriented programming. Although Apple has been using object-oriented 
technology longer than most, Apple must take the next step and integrate 
the operating system with object-oriented technology. This will make it 
substantially easier for programmers to develop new applications by reus
ing existing code and by simplifying the cumbersome development pro
cess that all developers must follow today . 

.,.. Conclusion 
In this chapter, you've looked a t future goodies anticipated for the Macin
tosh operating system. Apple must continue to broaden and deepen the 
Macintosh operating system if the Macintosh is to remain a competitive 
platform, and the 1990s should see some spectacular innovations from 
Apple. 

The software that we have today will change-it has to, because more 
and more applications are reaching the limits of complexity that our cur
rent tools can build. The future software worlds ·will provide us with an 
architecture and tools to build far more complex application systems. 
Instead of creating monolithic applications that try to do everything, but 
that do nothing well, developers will be connecting smaller applica tions 
with interprocess communica tions. 



Index 

16-bit direct color, 262 
24-bit memory map, 289 
32-bit cleanliness, 11, 289-292 

AS world, 292 
compatibility, 292 
memory addresses, 291- 292 

32-bit memory map, 290 
32-bit QuickDraw, 262- 270 

See also QuickDraw 
direct color devices, 262 

PlCT2 format, 265- 266 
PixMaps, 263- 265 

gray-scale support, 268 
improvements, 263 
indexed color devices, 263 
regions, 267 
system calls, 267-268 

A 
AjUX 

32-bit addresses, 290 
32-bit clean code, 59 
applications, 59-61 
compatibility, 51, 59 
managers available, 57-58 
System 7, 56-61 
Toolbox, 56- 58 

A/UX Toolbox, 57 
AS world, 292 
AcceptHighLeve!Event system 

call, 74-75 

Action atoms, 41 
ActivatePalette system call, 272 
addAssertion clause, 43-44 
addAuditRec clause, 43 
addPackages clause, 43 
Address descrip tor record 

(AEAddressDesc), 79 
addUserDescription clause, 43 
Adobe Type Manager (ATM), 106 
ADSP (AppleTalk Data Stream 

Protocol), 248, 253- 257 
Connection Control Block (CCB), 

253 
Connection Listener (CL), 254, 

256-256 
connection modes, 254 
data structures, 253 
system calls, 254- 257 

AECoerceDesc system call, 81 
AECoercePtr system call, 81 
AECountltems routine, 82 
AECreateAppleEvent system call, 

82 
AECreateDesc system call, 82 
AECreateList system call, 82 
AEDeleteltem routine, 83 
AEDeleteKeyDesc routine, 83 
AEDeleteParam routine, 83 
AEDisposeDesc routine, 81 - 82 
AEDuplicateDesc system call, 82 
AEGetArray routine, 82 

AEGetAttributeDesc routine, 82 
AEGetAttributePtr routine, 82 
AEGetCoercionHandler routine, 

81 
AEGetEventHandler system call, 

80 
AEGetlnteractionAllowed system 

call, 84 
AEGetKeyDesc routine, 82 
AEGetKeyPtr routine, 82 
AEGetNthDesc routine, 82 
AEGetNthPtr routine, 82 
AEGetParamDesc routine, 82 
AEGetParamPtr routine, 82 
AEGetSpecia!HandJer system call, 

81 
AEGetTheCurrentEvent system 

call, 80 
A Elnstall CoercionHandler 

routine, 81 
AElnstallEventHandler system 

call, 80 
AEinstal!Specia!Handler system 

call, 81 
AEinteractWithUser system call, 

84 
AEProcessAppleEvent routine, 80 
AEPutArray routine, 83 
AEPutAttributeDesc routine, 83 
AEPutAttributePtr routine, 83 
AEPutDesc routine, 83 

345 



346 ~ Index 

AEPutKeyDesc routine, 83 
AEPutKeyPtr routine, 83 
AEPutParamDesc routine, 83 
AEPutParamPtr routine, 83 
AEPutPtr routine, 83 
A ERemoveCoercionHandler 

routine, 81 
AERemoveSpeciaiHandler system 

call, 81 
AEResetTime system call, 84 
A EResumeTheCurrent Event 

system call, 81 
AESEnd system call, 83 
AESetlnteractionAIIowed system 

call. 83 
AESizeOfAttribute routine. 82 
AESizeOfKeyDesc routine, 82 
AESizeOfNthltem routine, 82 
AESizeOfParameter routine, 82 
AESuspendTheCurrentEvent 

system call. 81 
AFP (AppleTalk Filing Protocol), 

257 
Alert notification, 302 
Alerts, help messages, 176- 177 
Alias file, 308 
Alias Manager, 314-316 

alias records, 314-315 
calling, 315-316 
canonical records, 314-315 
compatibility, 308 

Alias records, 96,314-315 
Aliases, 13, 23-24, 313-316 

deleting, 24 
displaying, 23 
opening files, 23 

'alis' data type, 94 
'alis' resource, 315 
AllowPurgePixels system call, 275 
AMU chip, 14 
AnimateEntry system call, 273 
AnimatePa1ette system call, 273 
AppendDITL system call, 242 
AppendMenu system call, 172 
Apple event lnterprocess 

Messaging Protocol (AEIMP), 
76 

Apple event Manager, 77-78 
address descriptor record 

(AEAddressDesc), 79 

coercing data to other data types, 
81 

data structures, 77-80 
descriptor list (AEDesclist), 

79-80 
descriptor record (AEDesc), 

78-79, 81-82 
keyword-specified descriptor 

record (AEKeyDesc), 79 
routines, 81 

Apple events, 5-6, 73, 76-84 
attributes, 77 
client applications, 77 
compatibility, 77 
controlling user interaction 

preferences, 83 
descriptor types, 78-79 
dispatch tables, 80-81 
Edition Manager, 99-100 
extracting data, 81-82 
keywords, 79 
object model, 341 
parameters, 77-78 
pointers to handlers, 80 
print document(s), 5 
processing, 80 
records (AERecord), 80 
required, 76 
routines, 83 
sending, 82-84 
server applications, 77 
sources, 77 
suspending and resuming 

processing, 80-81 
targets, 77 
vs. PPC Toolbox, 65 

Apple menu, 4, 17-18 
Apple Menu Items folder, 4, 18, 22, 

322 
Apple Programmer's and 

Developer's Association 
(APDA), 337 

Apple Sound Chip (ASC), 194- 195 
Apple events, 60 
AppleScript, 84, 341 
AppleShare, 24 
AppleTalk, 9-10, 212, 245, 247 

protocols and drivers, 246-248 
AppleTalk Data Stream Protocol 

(ADSP), 10, 245 

AppleTalk Phase II, 245, 248-257 
AppleTalk Transition Queue, 

250-252 
application developer features, 

249 
compatibility, 253 
transitions, 251 

Application menu, 4, 20-21 
application-died events, 72 

Applications 
32-bit cleanliness. 11 
7.0-compatible, 59- 60 
7.0-dependent, 59-60 
7.0-friendly, 59-60 
A/UX and, 59-61 
background notifying user, 12 
client, 77 
controlling colors/gray scales, 

270 
exchanging messages, 73 
external code as part of 

installation, 41 
Finder information available to, 

13 
help messages, 171 
idle and sleep state, 13 
installation disk order, 48 
installing, 5, 39 
launching, 298- 299 
list, 4, 21 
major switch, 296-297 
memory partition allocation, 

75-76 
minor switch, 296-297 
moving. 72 
network installation, 5 
notification request, 301 
preferring outline to bitmap 

fonts, 116 
receiving session requests, 68- 69 
server, 77 
sharing data, 6 
signatures, 13 
simulating forms, 27 
sound channels and commands, 

192 
supporting Edition Manager, 93 
transferring data, 63, 87 

ASP (AppleTalk Session Protocol), 
248 



Assertions, 44 
AssociateSection routine, 96 
ATEvent routine, 25 1- 252 
Atoms, 40- 41 
ATP (AppleTalk Transaction 

Protocol), 248-250 
ATP driver, 247 
ATPGetRequest system call, 250 
ATPKillA IIGetReq system call, 

250 
ATPreFlightEvent rou tine, 251 
Attention channel, 214 
Audible notification, 301 
Audio Interchange File Format 

(AIFF), 189 
Audit atoms, 41, 46-47 
Authentication, 66 
Autokey even ts, 230 

8 
Backing store file, 282 
BalloonWriter, 171 - 172 
Binary files, 39 
BitMaps, 6-7, 32, 104, 107, 264 

color, 262 
converting to QuickDraw, 267 
masking, 267 
offscreen, 274- 275 

BitMapToRegion system call, 267 
Black-and-white icons, 4, 30- 31 
Blocks, 64, 69 
Boot blocks, 41 

atoms, 41 
changes to be made, 47 
parameters, 41 

Bottleneck procedures 
(QuickDraw), 261 

buffercmd sound command, 199, 
201 

c 
CalcColorTable routine, 279 
Calendars, international, 139- 140 
CALL statement, 153 
CaiiEditionOpenerProc system 

call, 99 
CallFormatiOProc system call, 99 
Cancel button, mapping Escape 

and Command-period keys to, 
35 

Canonical records, 314-315 
'cbnd' bundle resource, 221, 224 
CDEF (control definition 

procedures). 24 1, 290-291 
'cder code resource, 220- 222 
cGrafPort record, 274 
Character codes mapping to key 

codes, 141 
Characters 

closest to position, 126 
converting to uppercase, 136 
coordinates, 127 
end-of-line, 126 
processing incoming, 127 
TrueType, 110-11 1 
two-byte, 7 

checkAIIAssertions clause, 43-44 
checkAnyAssertions clause, 43 
checkAnyAuditRecord clause, 43, 

46 
checkATVersion clause, 43 
checkAuditRecord clause, 43, 46 
checkFileContainsRsrcByName 

clause, 42 
checkFileCountryCode clause, 43 
checkFileDataForkExists clause, 42 
checkFiJeVersion· clause, 43 
checkGestalt clause, 42 
checkM.inMemory clause, 42 
checkMoreThanOneAssertion 

clause, 43-44 
checkTgtVolSize clause, 43 
checkUserFunction clause, 43-44 
Chooser, 35 
CL/ 1. See Data Access Language 

(DAL) 
Clauses. 42 
Client applications, 77 
Clipboard, 87- 89 

vs. Edition Manager, 6, 89 
'doc' code resource, 221, 224 
Close Selected Icon (Enter) key, 27 
CLOSE TABLE statement, 155 
CloseEdition routine, 97-98 
ClosePicture system call, 267 
CMAbort system call, 217 
CMAccept system call, 217 
CMActivate routine, 218 
CMAddSearch routine, 218 
CMBrea.k routine, 218 

..,.. Index 347 

CMChoose routine, 216 
CMCiearSearch routine, 218 
CMCiose system call, 218 
cmCioseMsg message, 222 
CMDefault routine, 216, 220 
cmDefaultMsg message, 223 
cmDisposeMsg message. 221 
CMEnglishTolntl routine, 219 
CMEvent routine, 218 
CMGetCMVersion routine, 213 
CMGetConfig routine, 216 
CMGetConnEnvirons routine, 217 
CMGetProciD routine, 216 
CMGetRefCon routine, 219 
CMGetTooLName routine, 219 
CMGetUserData routine, 219 
CMGetVersion routine, 219 
CMidle system call, 217 
cmlnitMsg message, 221 
CMintiToEnglish routine, 219 
CMIOKill routine, 218 
cmL2English message, 224 
cml21ntl message, 224 
CMListen system call, 217 
CMMenu routine, 218 
cmMgetMsg message, 223 
cmMsetMsg message, 224 
CMNew routine, 216 
cmNotSupported message, 223 
CMOpen routine, 217 
cmOpenMsg message, 221 
CMRead routine, 218 
cmReadMsg message, 222 
CMRemoveSearch routine, 218 
CMReset routine, 218 
CMResume routine, 219 
cmScleanupMsg message, 223 
CMSetConfig routine, 216 
CMSetRefCon routine, 219 
CMSetUserData routine, 219 
cm561terMsg message, 223 
cmSitemMsg message, 223 
cmSpreflightMsg message, 223 
CMStatus system call, 217 
CMValidate system call, 216, 220, 

224 
cmValidateMsg message, 223 
CMWrite routine, 218 
CMYK (Cyan-Magenta-Yellow

Black), 10, 269 



348 ~ Index 

Color, 10, 29-31 
animating, 271 
bitmaps, 262 
courteous, 270 
inhibited, 271 
palettes, 10 
selecting, 269 
tolerant, 270 

Color control panel, 30 
Color icons, 4, 30-31, 141 
Color Lookup Table (CLUT), 263, 

270- 271, 273 
Color Picker dialog box, 269 
Color Picker Package, 10, 269-270 

converting between color models, 
270 

CMYK (Cyan-Magenta-Yellow
Black), I 0, 269 

HLS (Hue-Lightness-Saturation), 
10, 269 

HSV (Hue-Saturation-Value), 10, 
269 

RGB (Red-Green-Blue), 10, 269 
Comments, 45 
COMMIT statements, 155 
Communications, 209- 210 

devices queue, 240-241 
Communications Folder, 22, 216, 

228, 323 
Communications Resource 

Ma nager, 9, 210, 213, 215 
programming, 240-241 

Communications Toolbox, 9, 
209-242 

architecture, 209- 211 
Communications Resource 

Manager, 9, 210, 213, 215, 
240 

Communications Toolbox 
Utilities, 9, 210-211, 215, 
24 1- 242 

compatibility, 212-213 
Connection Manager, 9, 210, 

213- 219 
data structures, 211- 212 
File Transfer Manager, 9, 210, 

213, 234-240 
manager 

independence, 210-211 
versions, 213 

network and communications 
software, 212 

Terminal Manager, 9, 210, 213, 
224-234 

Communications Toolbox Utilities, 
9, 210-211, 215 

programming, 24 1-242 
Comp3tol routine, 201 
Comp6tol routine, 201 
Conditional 

clauses, 42 
sleep demands, 328 

Configuration records, 212 
Connection Control Block (CCB), 

253 
Connection Listener (CL), 254, 

256-257 
Connection Manager, 9, 210, 

213- 219 
attention channel, 213- 214 
connections, 217- 218 
code resources, 221 
control channel, 213-214 
data channel, 213-214 
environment, 217 
handling events with routines, 

218-219 
interfacing with scripting 

language, 216 
international support, 219 
programming, 213- 219 
record, 215 
routines, 215-219 
tools, 214 

Connection records, 211, 215-216, 
223 

Connection tools, 214 
choosing, 216 
interfacing with scripting 

language, 223- 224 
international translations, 224 
prodD, 216 
resources, 224 
setting connection record to 

default values, 216 
writing, 219-224 

Control channel, 214 
Control panels, 22 

Color, 30-31 
Keyboard, 141 

Memory, 27- 28 
Sharing Setup, 24, 64-65 
Sound, 204 
Users and Groups, 25, 66, 258 

Control Panels folder, 22, 322 
convertCmd sound command, 201 
Cooperative multitasking, 11, 296 
Copy command, 89 
CopyBits system call, 10, 267 
CopyDeepMask routine, 267 
CopyMask system call, 267 
CopyPa.lette system call, 273 
Correction tools, 22 
CountAppFiles routine, 76 
CountDITI system call, 242 
Courteous colors, 270 
Create Publisher ... command, 32, 

87-89,92 
CreateEditionContainerFile 

routine, 96 
CRMGetllndResource routine, 

241 
CRMGetlNamedResource routine, 

241 
CRMGetlResource routine, 241 
CRMGetCRMVersion routine, 213 
CRMGetlndex routine, 241 
CRMGetlndResource routine, 241 
CRMGetlndToolName routine, 

24 1 
CRMGetNamedResource routine, 

241 
CRMGetResource routine, 241 
CRMinstaU system call, 240 
CRMLocalToReaiiD routine, 24 1 
CRMReaiToLocaUD routine, 241 
CRMReleaseResource routine, 241 
CRMRemove system call, 240 
CRMSeaich routine, 241 
'cscr' code resource, 221, 223-224 
'cset' code resource, 220. 223 
CTab2Palette system call, 272 
CTabChanged routine, 269 
CTBGetCTBVersion routine, 213 
Currency formats, 139 
Cursor, adjusting shape, 72 
Custom Install dialog box, 44 
Custom Install script, 39, 41 
Custom menu definition procedure 

(MDEF), 171, 182 



Custom menus, help resources, 182 
CustomGetfile routine, 316, 

318-319 
CustomPutFile routine, 316, 319 
'eva! ' code resource, 220, 223 
Cyan-Magenta-Yellow-Black 

(CMYK), 10, 269 

D 
DAs. See desk accessories (DAs) 
Data 

extracting from Apple events, 
81-82 

sharing between applications, 6 
Data Access Language (DAL), 7-8, 

145- 160 
comments, 153 
compound sta tements, 153 
CURSOR data type, 153 
data manipulation, 152 
data types, 154 
databases, 154- 159 
error codes, 156 
examples, 157- 158 
expressions, 154 
external variables, 153 
functions, 153 
GENERIC d ata type, 153 
identifiers, 153 
literals, 154 
local variables, 153 
OB)NAME data type, 153 
operators, 155 
output, 153 
procedures, 153 
program control, IS 2-153 
running, 150-151 
security, 156- 157 
SQL (Structured Query 

Language), 8, 151 
statements, 152- 153 
system variables, 153 
vs. data management system 

(DBMS), 158-159 
Data Access Manager (DAM), 2, 

7-8,32, 145-150, 160-167 
architecture, 148-150 
compatibility, 161 
converting d ata to text strings, 

164- 165 

high -level calls, 161 - 163 
human interface guidelines, 

166- 167 
initializing, 163 
low-level calls, 161- 166 
queries, 31, 150 
query documents, 161- 162 
result handlers, 164-165 
retrieving data, 164 
security, 156- 157 
sending data to host, 164 

Data channel, 213-214 
Data fork, xxx 
Data structures, 332 

ADSP (AppleTalk Data Stream 
Protocol), 253 

Apple event Manager, 77-80 
Communications Toolbox, 

211-212 
GDevice record, 274- 277 
Graphics Device Manager, 274 
GWorld record, 274- 275 
PixMaps, 264 
QuickDraw editing, 268-269 
Sound Manager, 189 
SPB (Sound-input Parameter 

Block), 206- 207 
Database management system 

(DBMS), 146- 147, 150- 151 
errors, 164 
in formation about, 165-166 
nonrelational, 155 
rela tional, 155 
queries, 164-165 
session , 163 
vs. Data Access Language (DAL), 

158-159 
Databases, 146 

Data Access Language (DAL) 
and, 154- 159 

generic application programming 
interface, 148 

listing, 155 
query ing, 148- 150 

Date formats, 139 
DB2, 8 
DBBreak system call, 165 
DBDisposeQuery system ca ll, 147, 

163 
DBEnd system call, 147, 163 

..,._ Index 349 

DBExec system call, 164 
DBGetConnlnfo system call, 

165- 166 
DBGetError system call, 164 
DBGetltem system call, 164- 165 
DBGetNewQuery system call, 162 
DBGetQueryResults system call, 

147, 163 
DBGetResultHand1er system call, 

165 
DBGetSessionNum system call, 

166 
DBinit S)'Stem call, 163 
DBinstallResultHand1er system 

call, 165 
DBKill system call, 165 
DBNewQuery system call, 146 
DBRemoveResultHandler system 

call, 165 
DBResultsToText system call, 147, 

163-165 
DBSend system call, 164 
DBSendltem system call, 164 
DBStartQuery system call, 146, 

163 
DBState system call, 164 
DBUnGetltem system call, 164 
Debuggers, 72 
DeferUserFn function, 285 
DeleteEditionContainerFile 

routine, 96-97 
DeleteUserldentity system call, 69 
Demand paging memory, 282 
DeRez tool, 39 
DESCRIBE statements, 155 
Descriptor list (AEDescList), 79-80 
Descriptor record (AEDesc), 78- 79 
Desk accessories (DAs), 4 

Find File, 18 
launching, 299 
listing active, 21 
locations to keep, 23 

Desktop 
listing objects, 18 
moving around on, 26- 27 
objects, 26-27 
stationery pad, 27 
Trash, 27 



350 ..,.. Index 

Desktop database, 319- 321 
application connecting 

information, 320 
file comment calls, 320- 321 
icon bitmap calls, 320 
system calls, 320- 321 

Desktop Folder, 22, 322 
despWrite system call, 255 
Devanagari Script System, 128 
Device drivers, 59, 328 
DeviceLoop routine, 276 
Devices, 262- 263 
Diacritical characters, stripping out, 

136 
Dialog boxes, 33- 35, 123, 318- 319 

buttons, 35-36 
complex, 334 
help messages, 176- 177 
help states, 173 
keyboard navigation, 4, 33-35 
managing, 242 
modal, 34 
modeless, 34 
movable modal, 4, 33-34 

Direct color 
devices, 262 
PICT2 format, 265- 266 
PixMaps, 264- 265 

Direct memory access (DMA), 340 
DirectBitsRect opcode, 265- 266 
DirectBitsRgn opcode, 265- 266 
Directory IDs, 309 
Disks, order during installation, 48 
Dispatch tables, 80- 81 
Display, TextEdit synchronizing 

with keyboard, 124 
DisposeColorPickMethod routine, 

279 
DisposeHandle system call, 287 
DisposePalette system call, 271 
DisposePictlnfo routine, 278- 279 
DisposeResource system call, 271 
DisposGDevice routine, 277 
DisposGWor1d system call, 275 
DisposHandle routine, 288 
DitherCopy system call, 267 
'DITL' resource, 176- 177 
'DLOG' resource, 318 
Document string resources, 

321-322 

Documents 
saving 

with publishers, 89 
with sections, 94 

subscribing, 89 
utilizing editions, 89 

doface mode, 127 
doToggle mode, 127 
Double page fault, 285 
DragGrayRegion system call, 267 
DrawPicture system call, 267 
DrawText routine, 117 
DSP driver. 247, 253-256 
dspAttention system call, 255- 257 
dspCLDeny system call, 254 
dspCLinit system call. 254, 256 
dspCLListen system call, 254, 

256- 257 
dspC1ose system call. 254. 256-257 
dspCLRemove system call, 254, 

257 
dspDeny system call, 257 
dsplnit system call, 254, 256- 257 
dspOpen system call, 254, 256- 257 
dspOptions system call, 255- 256 
dspRead system call, 255-257 
dspRemove system call, 254, 

256- 257 
dspReset system call, 255 
dspStatus system call, 254 
dspWrite system call, 256-257 

E 
Easy Install 

rules, 42, 44 
script, 39 

Edit menu, 18, 32, 34, 89, 92, 181 
Edition files, 6, 3 1, 90, 94 

deleting, 96- 97 
file types, 96 
information about, 98 
locating, 89, 91 
moving to another volume, 92 
updating. 89 

Edition icons, 31 
Edition Manager, 5-6, 32, 73, 

87- 101, 314 
Apple events, 99-100 
compatibility, 95 
format marks, 98-99 

high-level events, I 00 
implementing support, 100 
reading and writing edition data, 

96 
section records, 95- 96 
sections, 96 
starting, 95 
subscribing to files, 99 
supporting from applications, 93 
updating alias record, 96 
vs. Clipboard, 6, 89 

Edition opener procedures, 99 
EditionHasFormat routine, 98 
Editions, 92 

reading/ writing data, 97- 98 
utilizing in documents, 89 

EmptyHandle routine, 288 
Emulation tools, 22 
End-of-line characters, 126 
ENET driver, 247 
Enter key, 35 
Environmental selectors, 52- 54 
Environs system call, 51 
EtherTalk, 247 
Event Manager, 74 
EventAvail system call, 72- 73, 296 
Events, xxxii-xxxiii, 5- 6 

Apple, 5- 6, 73, 76- 84 
application-died, 72 
autokey, 230 
Connection Manager routines, 

218- 219 
File Transfer Manager routines. 

237 
high-level. 71, 73-76, 84 
key-down, 230 
low-level, 71-72 
mouse-down, 230 
mouse-moved, 72 
operating-system. 72 
resume, 72 
suspend, 72 
Terminal Manager routines, 230 

EXECUTE statements, 155 
Explto3 routine, 20 1 
Exp1to6 routine, 20 I 
Extensions folder, 22. 322 

F 
Farallon Sound Recorder. 188 



'fbnd' bundle resource, 238 
'fdcf' code resource, 238-240 

messages, 239 
FETCH statement, 155 
File atoms, 40-41, 45 
File IDs, 12, 308-310 
File Manager 

compatibility, 308, 313 
file IDs, 308-310 
files, 309- 311 
high-level HFS calls, 312 
routines, 311-313 

File menu, 18, 25, 32, 166 
File servers, 24- 25, 245-246, 257 
File Sharing, 9-10, 24- 25, 

245- 246, 257-259 
File system, 12- 13, 307-323 
File Transfer Manager, 9, 210, 213, 

21 7 
file transfer records, '21 1, 

235-236 
international support, 238 
programming, 234-240 
routines, 236-238 

File transfer records, 211, 235- 237 
File transfer tools, 9, 22, 234- 235, 

238- 240 
Files 

.r, 39 
alias, 308 
backing store, 282 
binary, 39 
control panel, 22 
copying or deleting, 41 
edition, 6, 31 
generic reference, 13 
grouping by function, 21- 22 
keeping track of, 308- 310 
labeling, 19- 20 
locating, 4, 18 
opening from aliases, 23 
pathname, 47 
pointing to original file, 23 
preferences, 22 
query document, 31 
recording sounds to, 205 
search criteria, 12- 13 
searching for, 310-311 
sound, 189 
specifying, 310 

s tatiopery, 31 
subscribing to, 99 
suitcase, 22 
swapping data and system fork, 

309 
System, 137 
SysTypes.r, 138 
temporary, 22 
transferring, 236-237 
viewing by label, 19 

Find Again command, 18 
Find File desk accessory (DA), 18 
Find ... command, 4, 18 
Finder, 4, 17- 27, 314 

document string resources, 
321- 322 

help message, 179 
information, 13, 319- 320 
menu bar, 17- 18 
new icon types, 321 

Finder mode, 11 
FindFolder system call, 323 
FindScriptRun system call, 140 
FindWord procedure, 127, 140 
Fix2Sma11Fract routine, 270 
Fixed-frequency scheduling, 304 
'floc' code resource, 238 
flushCmd sound command, 200 
FlushFonts system call, 116 
fmAbortMsg message, 240 
FMDefault routine, 238 
fmDisposeMsg message, 240 
fmExecMsg message, 240 
fmlnitMsg message, 240 
fmStartMsg message, 240 
'fmts' data type, 94 
FMValidate routine, 238 
'FOND' resources, 46, 107- 109, 

132, 139 
Font Manager, 60, 105 

compatibility, 11 6 
flushing caches, 11 6 
measurements on string of 

characters, 116- 117 
not scaling font to fit line, 11 7 
selecting fonts, 11 5 
TrueType, 116- 117 

Font numbers, 104 
'FONT' resources, 46, 104, 

107- 108, 266 

.,.. Index 351 

Font/DA Mover, 4, 22- 23, 105 
FontName opcode, 266 
Fonts, 103-118 

advance-width character 
measurement, 117 

bitmap, 6-7, 32, 104, 107 
family, 107 
headers, I 09 
help balloons, 183 
history, 103- 106 
identifying by name, 106- 108 
inconsistent information, 46 
installing, 4, 22-23 
left-side bearing character 

measurement, 11 7 
points, 104 
PostScript, 105-108, II 0 
selecting with Font Manager, 115 
sizes, 32, 60, 11 7 
TrueType, 5- 7, 108- 116 

FOR EACH statement, 155 
Format marks, 98-99 
Format2Str routine, 141 
FormatStr2X routine, 141 
FormatXString routine, 141 
freeCmd command, 193 
'fscr' code resource, 238 
'(set' code resource, 238 
FSOpen routine, 312 
FSpCreateResFile routine, 313 
FSpExchangeFiles system call, 309 
FSpOpenResFile routine, 313 
FSSpec records, 12, 310, 318 
FTAbort routine, 237 
FTActivate routine, 237 
FTChoose routine, 236 
FTDefault system call, 237 
FTDispose routine, 237 
FTEnglishTointl routine, 238 
FTEvent routine, 237 
FTExec routine, 237 
FTGetConfig routine. 236 
FTGetFTVersion routine, 213 
FTGetProciD system calL 237 
FTGetRefCon routine, 238 
FTGetTooJName routine, 238 
FTGetUserData routine, 238 
FTGetVersion routine, 238 
FTintlToEnglish routine, 238 
FTMenu routine, 237 



352 ..,.. Index 

FTNew routine, 236 
FTResume routine, 237 
FTSetConfig routine, 236 
FTSetRefCon routine, 238 
FTSetUserData routine, 238 
FTStart routine, 237 
FTValidate routine, 237 
FUnits, 11 4 
'fva l' code resource, 238 

G 
GDEF resource selector functions, 

56 
GDevice record, 274-277 
GDeviceChanged routine, 269 
Generative clauses, 42 ' 
Generic file reference, 13 
Gestalt Manager, 51-56, 59 
Gesta lt system call, 51-55, 65, 77, 

95, 123, 136, 202, 212 
selectors, 52-54 
result types, 54-55 

Get Data ... command, 166 
Get Info dialog box, 27 
Get Info ... command, 27 
GetAiiaslnfo system call, 316 
GetAppFiles routine, 76 
GetColor routine, 269 
GetCTable system call, 268 
GetCurrentProcess system call, 

299-300 
GetCVariant system call, 291 
GetDefaultUser system call, 69 
GetDeviceList routine, 276 
GetEditionFormatMark system 

call, 96, 99 
GetEditionlnfo routine, 98 
GefEditionOpenerProc system call, 

99 
GetEntryColor system call, 271 
GetEntryUsage system call, 271 
GetEnvirons routine, 136 
GetFrontProcess system call, 300 
GetGDevice routine, 276 
GetGray system call, 267 
GetGWorld system call, 275 
GetGWorldDevice system call, 275 
GetHandleSize rou tine, 288 
GetlastEditionContainerUser 

routine, 97 

GetlocaiZones system call, 250 
GetMainDevice routine, 276 
GetMaxDevice routine, 276 
GetMaxZone system call, 250 
GetNewPalette system call, 271 
GetNextDevice rou tine, 276 
GetNextEvent system call, 59-60, 

72-73, 286-287, 296 
GetNextProcess system call, 300 
GetOutlinePreferred system call, 

11 6 
GetPalette system call, 272 
GetPaletteUpdates system call, 273 
GetPhysical system call, 285 

Hardware 
device drivers, 59 
managers, 59, 325- 329 
sounds, 195 

HasDepth routine, 277 
HCirRBit routine, 288 
HCreateResFile routine, 313 
'hdlg' resource, 176-177, 181- 184 
Head table in sfnt resources, 109 
HeaderOp opcode, 266-267 
Heap, xxviii-xxix 
Help, turning onjoff, 21 
Help balloon, 169, 171 

displaying True/Fa lse, 183 
fonts, 183 

Help command, 32 

GetPictlnfo routines, 277, 279 
GetPixBaseAddr system call, 275 
GetPixelsState system call, 275 
GetPixMaplnfo routine, 278-279 
GetPortNameFromProcessSeriaiNumber 

Help Manager, 8, 21, 32, 169-185 
compatibility, 172 
custom menus, 182 
flags, 174 routine, 75 

GetPreserveGlyph system call, 11 7 
GetProcesslnformation system 

call , 300 

help messages, 173-174 
hot rectangles, 172- 173 

GetProcessSeriaiNumberFromPortName 
mapping from window titles to 

help resource, 178- 179 
modal dialog boxes, 181 
modeless dialog boxes, 181 - 182 
movable window objects, 183 
resources, 174- 180 

routine, 75 
GetResource system call, 271 
GetScript routine, 136 
GetSpecificHighleveiEvent 

system call, 74 
GetWVariant system call, 291 
GetZoneList system call, 250 
Global variables 

low-memory, 59 
scripts, 136 

GotoPublisherSection routine, 
98-99 

Graphica l human interface, 2 
Graphics Device Manager, 10, 

274- 277 
data structures, 274-277 

Graphics devices, 10 
communicating, 274-277 

Grid-fitting, 11 4 
GWorld record, 274- 275 

H 
Handles, xxix 
HandleZone routine, 288 
Hard disks, space and virtual 

memory (VM), 15 

routines, 183- 184 
states, 173 
windows, 181- 182 

Help menu, 21, 32, 34, 169, 181 
Help messages, 171, 173-174 

alerts and dialog boxes, 176- 177 
finder, 179 
international support, 172 
NIL string, 176 
overriding default, 179- 180 
set of window objects, 177-178 
standard menus, 175-176 
windows, 176-177 
wri ting, 185- 186 

Help resources for menus, 184- 185 
'hfdr' resource, 179 
HGetState routine, 288 
Hierarchical File System (HFS), 307 

equivalent routines for MFS 
routines, 312 

high-level calls, 312 



High-level events, 5-6, 71, 73-76, 
84 

additional information about, 74 
Apple, 5 
calling manager routines, 74 
describing, 73-74 
Edition Manager, 100 
mask set in event record, 73 
message field, 73-74 
retrieving, 7 4 
sending to another application. 

74-75 
Historical installation information, 

41 
Hlock routine, 288 
HLS (Hue-Lightness-Saturation), 

10, 269 
HMCompareltem statement, 180 
HMGetBalloons routine, 182 
HMGetDialogResiD routine, 183 
HMGetFont routine, 183 
HMGetFontSize routine, 183 
HMGetHelpMenuHandle routine, 

172 
HMGetMenuResiD routine, 184 
HMlsBalloon routine, 183 
HMNamedResource statement, 180 
'hmnu' resource, 175-176, 180, 

183-185 
HMRemoveBalloon system call, 

182- 183 
HMScanTemplateltems routine, 

184 
HMSetBalloons system call, 182 
HMSetDialogResiD routine, 183 
HMSetFont routine, 183 
HMSetFontSize routine, 183 
HMSetMenuResiD routine, 

183- 184 
HMShowBalloon system call, 183 
HMShowMenuBaUoon system 

call, 182 
HNoPurge routine, 288 
HoldMemory system call, 284- 285 
HOpenDF routine, 312 
HOpenResFile routine, 313 
HGot rectangles, 172- 173, 177-178 
Hot regions, 172 
'hovr' resource, 179-180 
HPurge routine, 288 

'hrct' resource, 177-178, 181- 182, 
184 

HSetRBit routine, 288 
HSetState routine, 288 
HSV (Hue-Saturation-Value), 10, 

269 
Human interface 

color, 29- 31 
design, 29- 31 
d ialog boxes, 33-35 
guidelines, 29-36 

Data Access Manager (DAM), 
166- 167 

sound, 203 
menus, 32 
windows, 33 

HUnlock routine, 288 
'hwin' resource, 178- 179, 181 

'icmt' (Installer comments) resource, 
45, 47 

Icons 
black-and-white, 4, 30-31 
color, 4, 30-31 
edition, 31 
information about, 22 
large, 4 
new types, 31, 321 
query files, 31 
selecting next, 27 
small, 4, 31 
stationery, 31 

lmageWriter, 105 
'inaa' (action atom) resource, 46, 48 
'ina!' (audit atom) resource, 46-47 
'inbb' (block boot atom) resource, 

47 
Indexed color devices, 262-263 
'indo' (disk order) resource, 48 
'infa' (file atom) resource, 45 
Informational selectors, 52, 54 
Informix, 8 
'infr' (rule framework) resource, 44 
'infs' (file specification) resources, 

45- 47 
Ingres, 8 
Inheritance, 332 
inhibited color, 271 
InitCM system call, 215 

..,. Index 353 

initCmd command, 193 
InitCRM system call, 215, 228, 

236, 240- 241 
InitCTBUtilities system call, 215, 

228, 236, 24 1 
InitDBPack system call, 146, 

162-163 
lnitEditionPack system ca ll, 95 
InitFT system call, 236 
InitPickMethod routine, 279 
!NITS, 22 
InitTM system call, 228 
'inpk' (package) resource, 44- 45, 47 
'inra' (resource atom) resource, 

45- 46 
'inrl' (rule) resource, 42, 44 
Installer, 5, 37-49 

AppleShare server installation, 
37 

assertions, 44. 
comments, 47 
Custom Install script, 39 
customizing, 48 
Easy Install script, 39, 42, 44 
expert mode, 37 
live installation, 37 
one-button mode, 37 
Resource Manager, 39 
resources, 46- 4 7 
scripts, 5, 37, 39- 41 , 47 
splash screen, 48 
version 3.2, 37 

Instance variables, 332 
InsTime system ca ll, 305-306 
InsXTime system call, 305-306 
Integrated Voice Data Manager, 

212 
lnterapplication communications 

(lAC), 5-6 
low-level. 63 

Interfaces 
guidelines, 4-5 
programmable to NuBus cards, 

13 
standard user, 9 

International support, 121- 122 
calendars, 132 
Connection Manager, 219 
connection tools, 224 
File Transfer Manager, 2.38 



354 ..,. Index 

help messages, 172 
improvements, 136-142 
punctuation, 127 
resources, 137- 142 
script or writing system, 128- 132 
Terminal Manager, 231 
text buffering, 125-126 
TextEdit, 123- 124 
writing international software, 

142- 143 
International Utilities Package, 122, 

128, 136-137 
Interpreter, 114 
'INTL' resource, 139 
lnt!Tokenize routine, 141 
IPCListPorts system call, 67 
ISDN (Integrated Services Digital 

Network) Developer's Toolkit, 
212 

lsOutline system call, 116 
lsRegisteredSection routine, 96, 

100 
'itlO' resource, 137- 139 
'it11' resource, 137- 140 
'itl2' resource, 136-140 
'itl4' resource, 137- 141 
'itlb' resource, 138, 141 
'itlc' resource, 138- 139 
'itlk' resource, 142 
'itlm' resource, 137, 139 
IUCiearCache routine, 137, 140 
IUCompPString routine, 137 
IUCompString routine, 137 
IUDateString routine, 137 
IUEquaiPString routine, 137 
IUEqua1String routine, 137 
IUGetlntl routine, 137 
IUGetltlTable routine, 137 
IULangOrder routine, 137 
IULDateString routine, 137 
IULTimeString routine, 137 
IUMagiDPString routine, 137 
IUMagiDString routine, 137 
IUMagPString routine, 137 
IUMagString rou tine, 137 
IUScriptOrder routine, 137 
IUSetlnti routine, 137 
IUStringOrder routine, 137 
IUTextOrder routine, 137 
IUTimeString routine, 137 

J 
justification modes, 127-128 

K 
KCAP resource, 141 -142 
KCHR resource, 138, 141 
'kcs#' resource, 138, 141 
'kcs4' resource, 141 
'kesS' resource, 141 
Key codes, mapping to character 

codes, 141 
Key-down events, 230 
Keyboard codes, 141- 142 
Keyboard control panel, 141 
Keyboard menu, 141 
Keyboards 

color icons, 141 
moving around on desktop, 

26- 27 
navigating in dialog boxes, 4 
physical layout, 141-142 
TextEdit synchronizing with 

display, 124 
KeyTrans routine, 142 
Keyword-specified descriptor record 

(AEKeyDesc), 79 
'KSWP' resource, 142 

L 
Label menu, 17, 19-20 
Languages 

codes sorting order, 13 9 
international support, 128-132 

LAP (Link Access Protocol) 
Manager, 250- 251 

LAPAddATQ system call, 251 
LAPRmvATQ system call, 251 
Large icons, 4 
LaserWriter, 105- 1 06 
LaunchApplication routine, 

298-299 
LaunchDeskAccessory routine, 

299 
linejustify opcode, 266 
loadCmd sound command, 201 
Local variables, scripts, 136 
Locality of reference, 285- 286 
Loca!Talk, 247 
LockMemory system ca ll, 285 

LockMemoryContiguous system 
call, 285 

LockPixels system call, 275 
Low-level 

events, 71-72 
interapplication communications 

(lAC), 63 
Low-memory globals, 59 
LowerText routine, 140 

M 
MacApp 2.0, 334- 337 

MacBrowse, 334 
memory, 335-336 
programmer resources, 337 
ViewEdit tool, 334 

MacApp Developer's Association 
(MADA), 337 

MacBrowse, 334 
MACE (Macintosh Audio 

Compression and Expansion) 
syn thesizers, 194- 195 

MACEVersion system call, 202 
Macintosh 

!lsi, digital sound, 188 
LC, digital sound, 188 
operating system, xxvii 
Portable, 327- 329 

Macintosh Programmer's Workshop 
(MPW), 184 

Mark menu, 184- 185 
Marking selections, 184 
MatchAiias system call, 315-316 
mcWriteMsg message, 222 
MDEFs (Menu DEFinition 

procedures), 8, 182 
Memory 

addresses for 32-bit cleanliness, 
291-292 

deallocating local, 221 
d emand pagin g, 282 
MacApp 2.0, 335-336 
object-oriented programming 

(OOP), 335-336 
pages, 15, 282 
partition allocation for 

application, 75-76 
protection, 341 
requirements, 14 
temporary, 11, 286-288 



Memory control panel. 27- 28 
Memory management unit (MMU), 

14, 282 
Memory Manager, 11, 281- 292, 

314 
32- bit cleanliness, 289- 292 
backing store file, 282 
temporary memory, 286- 288 
virtual memory (VM), 281- 286 

Menu items, help states, 173 
MENU resource, 184 
Menus, 32 

help 
messages, 175- 176 
resources, 180, 184- 185 
states, 173 

new standard commands, 32 
pop-up, 32 

MenuSelect system call, 180 
Methods, 332 
MFFreeMem routine, 288 
MFMaxMem routine, 288 
MFTempDisposHandle routine, 

287- 288 
MFTempHLock routine, 288 
MFTempNewHandle routine, 288 
MFTopMem routine, 288 
Microsoft Windows, 1-2 
Modal dialog boxes, 34 

feedback, 35-36 
help resources, 181 

Modeless dialog boxes, 34 
help resources, 181- 182 

Modifiers, 193 
communications with Sound 

Manager, 193 
installing, 203 

Monitor cdev, 262 
Motorola 68851 PMMU chip, 14 
Mouse-down events, 230 
Mouse-moved events, 72 
Movable modal dialog boxes, 4, 

33- 34 
MPP driver, 247, 250-251, 

255- 256 
AppleTalk Transition Queue, 249 
current node information, 252 

MPPOpen system call, 255- 256 
MultiFinder, 20, 59-60, 72, 75, 295 
Multitasking 

N 

cooperative, 1 I , 296 
preemptive, 295, 341- 342 

NBP (Name Binding Protocol), 249 
metacharacters, 67 
wildcard characters, 252-253 

NBPLookup system call, 256 
NBPRegister system call, 256 
NChar2Pixel routine, 135 
NDraw]ust routine, 135 
Networks 

booting, 342 
edition files, 94 
installing applications, 5 

New print architecture, 340 
NewAiias system call, 315 
NewAiiasMinimal system call, 

315- 316 
NewAiiasMinimaiFromFullpath 

system call, 315- 316 
NewControl system call, 241 
NewGDevice routine, 276 
NewGestalt system call, 55 
NewGWorld system call, 274 
NewPa1ette sys tem call, 271 
NewPictinfo system call, 278 
NewPtr system call, 256 
NewPublisherDialog routine, 97 
NewPublisherExpDialog routine, 

97 
NewSection routine, 95-96 
N ewSubscriberDialog routine, 

97- 98 
NewSubscriberExpDialog routine, 

98 
NFindWord routine, 135 
'NFNT' resources, 46, 107-109, 266 
NIL string, 176 
NMeasureJust routine, 135 
NMinstall system call, 302 
NMRemove system call, 302 
Non-Macintosh file support, 340 
NoPurgePixels system call, 275 
Notification Manager, 12, 166, 191 , 

295, 301 - 302, 304 
alert notification, 302 
audible notification, 301 
notification 

request, 301 

..,.. Index 355 

response procedure, 302 
polite notification, 301 

NPixei2Char routine, 135 
NPortionText routine, 136 
NSetPalette system call, 273 
nTEWidthHook procedure, 

126- 127 
NuBus cards, 325 

programmable interface, 13 
NuLookup routine, 242 
Numbers, formats , 139 
NuPLookup routine, 242 

0 
Object-based programming, 334 
Object-oriented programming 

(OOP), 331-337, 343 
inheritance, 332 
instance variables, 332 
memory, 335- 336 
methods, 332 
objects, 332- 333 
performance, 335-336 

Objects, 332-333 
ocAccept mode, 254 
ocEstablish mode, 254 
ocPassive mode, 254 
ocRequest mode, 254 
On Location, 18 
Open Query command, 32 
OPEN TABLE s tatement, 155 
Open ... command, 35 
OpenCPicture system call, 267 
OpenCPort system call, 275 
OpenDeskAcc system call, 299 
OpenDF routine, 312 
OpenDriver system call, 253, 

255- 256 
OpenEdition routine, 98 
OpenNewEdition routine, 97 
OpenPicture system call, 267 
Operating system, xxvii-xxviii, 2 
Operating System Event Manager, 

71 
Operating-system events, 72 
Oracle, 8 
OutlineMetrics system call, 

116-117 
Output devices, graphics, 10 



356 .., Index 

p 
Packages, 44 

atoms, 41 
listings in Custom Install dialog 

box, 44 
managing, 41 
removable, 44 
resource type and ID of 

components, 45 
Page fau lt, 282 
Pages, 282 

supporting network and 
communications protocols, 
212 

Paging device, 282 
Palette Manager, 10, 270-273 

animating color, 271 
courteous colors, 270 
inhibited color, 271 
palettes, 271-273 
tolerant colors, 270 

Palette2CTab system call, 272 
Palettes, 272- 273 
Parallel routines, 137 
Parameter packet, 66 
Paste command, 89 
PATalkC!osePrep function, 251 
Pathnames, 47 
pauseCmd sound command, 200 
PBCatMove routine, 310 
PBCatSearch routine, 12- 13, 

310- 311 
PBCreateFileiDRef system call, 

309 
PBDeleteFileiDRef system call, 

309 
PBDTAddAPPL system call, 320 
PBDTAddlcon system call, 320 
PBDTCloseDown system call, 320 
PBDTFiush system call, 321 
PBDTGetAPPL system call. 320 
PBDTGetComment system call, 

320 
PBDTGetlcon system call, 320 
PBDTGetPath system call, 320 
PBDTOpenlnform system call, 320 
PBDTRestComment system call, 

321 
PBDTRmvAPPL system call, 320 

PBDTSetComment system call, 
320 

PBExchangeFiles system call, 309 
PBGetCatln.fo routine, 309-310 
PBGetlconlnfo system call, 320 
PBGetVolMountlnfo system call, 

313 
PBGetVolMountlnfoSize system 

call, 313 
PBHDelete routine, 310 
PBHGetVolParms system call, 308, 

311 
PBHOpenDF system call, 312 
PBHRename routine, 310 
PBOpenDF system call. 312 
PBSetForeignPrivs system call, 311 
PBVolumeMount system call. 313 
PGGetAppleTalklnfo system call, 

252 
PGGetForeignPrivs system call, 

311 
PICT file for'i:nat, 10, 94, 265, 

277-278 
'PICT' resource, 48, 173 
PICT2 format, 267 

direct color, 265- 266 
Picture Utilities Package, 10, 

277- 279 
PixMap records, 277- 279 
PixMap32Bit system call, 275 
PixMaps, 10, 262, 267 

converting to QuickDraw, 267 
data structures, 264 
direct color, 263-265 
locking down, 275 
masking, 267 

PixPatChanged routine, 269 
Playback synthesizers, 193 
'pitt' resources, 271- 272 
PmBackColor system call, 273 
PmForeColor system call, 273 
PMMU chip. See Motorola 68851 

PMMU chip 
Points, 104 
Polite notification, 301 
Pop-up menus, 32 
PortChanged routine, 269 
Ports, 64 

changing, 68 

converting names to and from 
serial numbers, 75 

filter function, 67 
listing, 67 
location, 64 
naming, 64 
opening, 67 
shutting down, 69 

PostHighLevel system call, 74 
PostScript fonts, 105- 108, 110 
PostScript language, 151 
Power Manager, 13, 325, 327- 329 

conditional sleep demands, 328 
sleep requests, 328 
unconditional sleep demands, 

328 
PPC Toolbox, 63-71, 84 

authentication of remote user, 66 
calling, 66- 71 
compatibility, 65 
completion routine, 66 
example, 69-71 
managing services, 65-66 
ports, 64, 67- 69 
receivin~;; and 5ending data, 69 
terminology, 64 
user authentication, 69 
vs. Apple events, 65 

PPC Toolbox. See lnterapplication 
communications 

PPCAccept system call, 69-70 
PPCBrowser system call, 67, 70 
PPCCall system call, 71 
PPCCiose system ca ll, 69, 71 
PPCEnd system call, 69, 71 
PPCinform system ca ll, 66, 68- 69 
PPCinit system call, 66 
PPCOpen system call, 67, 69 
PPCRead system call, 66, 69-70 
PPCReject system call, 69 
PPCStart system call, 68 
PPCWrite system call, 66, 69-70 
Preemptive multitasking, 295, 

341- 342 
Preferences fi les, 22 
Preferences folder, 22, 322-323 
PrimeTime routine, 304-306 
print document(s) Apple event, 5 
Print Monitor, 301 
Printer drivers, 22, 106 



PrintMonitor Documents folder, 22, 
322 

PROCEDURE statement, 153 
Procedures, 332 
Process Manager, 11, 295-301 

applications, 298- 299 
compatibility, 301 
desk accessories (DA), 299 
process scheduling and 

switching, 296- 297 
process serial numbers (PSN), 12, 

296 
Processes, 11- 12, 295-306 

background notifying user, 
301-302 

information about other, 
299-301 

listing active, 20-2 1 
Program-to-Program 

Communications (PPC), 63 
Programs 

connecting, 64 
controlling with Data Access 

Language (DAL), 152- 153 
disconnecting, 64 
receiving and sending data, 69 
supporting connections, 64 

Protocol handling, 221 
'prvw' data type, 94 
PSendResponse system ca ll, 250 
PSMakeFSSpec system call, 310 
Publisher Options ... dialog box, 90, 

97 
Publisher /Subscriber Options ... 

command, 32, 87, 92 
Publishers, 88- 98 

alias record, 94 
closing, 97- 98 
dialog boxes, 97 
displaying, 92 
opening document, 98 
saving documents, 89 

Punctuation, international support, 
127 

Q 
QDDone system call, 267 
'qdef' resource, 162 
QD Error routine, 267 
'9rsc' resource, 162 

Queries, 150 
executing, 164 

Query documents, 31, 150, 
161- 162 

icons, 31 
resources, 162 

Query records, 162, 163 
Queue for communications devices, 

240-24 1 
QuickDraw, xxxi-xxxii, 261-279, 

342 
See also 32- bit QuickDraw 
32-bit, 10, 262-270 
bottleneck procedures, 261 
Color Picker Package, 269- 270 
data structures, editing, 268-269 
Graphics Device Manager, 

274- 277 
history, 261-262 
Palette Manager, 270-273 
Picture Utilities Package, 

277-279 
regions, xxxi 
revised, 343 

QuickTime, 342 
quietCmd sound command, 200 
quit Apple event, 5 

R 
Read system call, 286 
ReadEdition routine, 98 
ReadPar tialResource routine, 313 
RealFont routine, 11 7 
RecordCo1ors routine, 279 
Recording sounds, 203 

high-level interface, 205 
low-level interface, 206-207 

RecordPictlnfo routine, 278 
RecordPixMaplnfo routine, 

278-279 
Records, 211 - 212 
RecoverHandle, 288 
Rescued Items from folder, 323 
Region codes, sorting order, 139 
RegisterSection routine, 96 
Relational databases standard 

programmatic interface to 
management systems, 7-8 

Rep1aceGestalt system call, 55-56 
ReplaceText routine, 136 

..,. Index 357 

reportError clause, 43 
required Apple events, 76 
Rescued Items from fo lder, 22 
ResEdit, 48 
ResolveAiias system call, 315 
ResolveAiiasFile routine, 316 
Resource alias, 315 
Resource atoms, 41 , 45-46 
Resource fork, xxx 
Resource Manager, 313 

Installer and, 39 
Resources, xxix-xxxi, 5 

copying or deleting, 41 
installing, 39 
international, 137- 142 
organization in scripts, 40- 41 

RestoreDeviceClut system call, 
273 

Result handlers, 164- 165 
resume events, 72 
RetrievePictlnfo routine, 278 
RetrievePixMaplnfo routine, 279 
Rez MPW tool, 39-40 
RGB (Red-Green-Blue), 10, 262, 

269 
RmvTime system call, 305-306 
ROLLBACK statements, 155 
Roman script system, 21, 128, 132 
Rules, 41 - 42, 44 

s 
SameProcess system call, 301 
Sampled sound, 199-200 
Save As ... command, 35, 309 
Save command, 309 
SaveBack system call, 273 
SaveFore system call, 273 
Scaler, 114 
Scan converter, 114 
Script codes, 139 
Script Manager, 121-122, 127, 

142-143 
compatibility, 136 
improvements, 128- 136 
routines, 133-136 
TextEdit compatibility, 123 

Script menu, 21 
Script systems, 128- 132 
ScriptCheck MPW tool, 40 
Scripts, 39 



358 "" Index 

comparing strings in different, 
137 

Custom Install, 39, 41 
developing, 39-40 
Easy Install, 39 
files in symbolic manner, 47 
global variables, 136 
Installer, 5, 37 
key combinations for switching, 

142 
local variables, 136 
organization, 40-41 
rules, 42 

SCSI Manager, 340 
Section records, 95-96 
SectionOptionsDialog routine, 

97-98 
Section0ptionsExpDia1og routine, 

97-98 
Sections, 92 

information about edition file, 98 
saving documents, 94 

SELECT statement, 155 
Selector functions, 56 
Selectors, 52-54 

environmental, 52-54 
informational, 52, 54 

Server applications, 77 
Session, 64 

requests, 68-69 
Set Startup ... command, 20 
SetAS routine, 292 
SetCurrentAS routine, 292 
SetDepth rou tine, 277 
SetEditionFormatMark routine, 

96, 99 
SetEditionOpenerProc system call, 

99 
SetEntryColor routine, 271-272 
SetEntryUsage routine, 271-272 
SetEnvirons rou tine. 136 
SetGDevice routine, 277 
SetGWorld system call, 275 
SetHandleSize routine, 288 
SetOutlinePreferred system call, 

115 
SetPa1ette system call, 272- 273 
SetPa1etteUpdates system call, 273 
SetPixelsState system call, 275 
SetPreserveGlyph system call, 117 

SetResLoad system call, 313 
SetResourceSize system call, 313 
SetScript routine, 136 
SetupAlFFHeader routine, 

206-207 
SetupSndHeader routine, 206-207 
'sfn t' resources, 109-110, 115,266 
Sharing command, 25 
Sharing d ialog box, 25 
Sharing Setup control paneL 24, 

64-65 
ShortenDITL system call, 242 
Show / Hide Borders command, 32, 

89, 92-93 
'SIZE' resource, 59, 75-76, 126, 292 
sizeCmd sound command, 201 
Sleep requests, 328 
Slot Manager, 13, 325-327 

compatibility, 327 
initialization process, 326 
routines, 327 

Slot Resource Table, 326 
Small icons, 4, 31 
Smal1Fract2Fix routine, 270 
'snd ' resource, 189, 191, 196, 199 
SndAddModifier system call, 203 
SndChanneiStatus system call, 202 
SndContro1 system call, 201 
SndDisposeChannel system call, 

198, 200 
SndDoCommand system call, 

198-200 
SndDolmmediate system call, 

198-200 
SndGetSysBeepstate routine, 191 
SndManagerStatus system call, 

202 
SndNewChannel system call, 193, 

198-199, 203 
SndPauseFileP1ay system calL 200 
SndP1ay system call, 190-191, 20 1 
SndRecord dialog box, 205 
SndRecord system call, 205 
SndRecordToFile system call, 205 
SndSetSysBeepState routine, 191 
SndSoundManagerVersion system 

call, 202 
SndStartFilePiay system call, 

190- 191, 199 
SndStopFilePiay system call, 200 

'snth' resource, 189, 193-1 94 
Software 

installation tools, 48- 49 
localization, 14 2 
system-wide functionality, 22 

Sony chip, 195 
Sound channels, 192 

capacity, 200 
limitations, 195 
managing, 198, 200 
modifiers, 193 
status, 202 

Sound control panel, 204 
Sound Manager, 9, 187-207 

allocatingjdeallocating sound 
channel, 191 

applications, 192 
architecture, 191- 195 
ASC (Apple Sound Chip), 194 
commands, 196-198 
compatibility, 201-202 
high-level calling, 190-191 
installing instruments, 199 
low-level calling, 198-201 
modifiers, 193, 203 
resources, 189 
sampled sound from disk, 

199- 200 
sound channel, 198, 200, 202 
sound input devices, 204 
synthesizers, 188, 193-195 
wave tables, 188 

soundCmd sound command, 199 
Sounds, 187-189, 191 

Apple Sound Chip (ASC), 195 
commands, 196-198 
compression and expansion, 

194-195, 201 
data structures, 189 
digital conversion, 9 
digitally recorded, 18!!-189 
files, 189 
hardware, 195 
human interface guidelines, 203 
input, 203-204, 206 
installing, 23 
recording, 203 
Sony chip, 195 
wave tables, 188 

Source-code browser, 334 



Sources, 77 
SPB (Sound-input Parameter Block) 

data s tructure, 206-207 
SPBBytesToMilliSeconds routine, 

207 
SPBCioseDevice routine, 207 
SPBGetDevicelnfo system caU, 206 
SPBGetlndexedDevice system call, 

206-207 
SPBGetRecordingStatus system 

call, 207 
SPBMilliSecondsToBytes routine, 

207 
SPBOpenDevice system call, 206 
SPBPauseRecording routine, 206 
SPBRecord system call, 206 
SPBRecordTofile system call, 206 
SPBResumeRecording routine, 206 
SPBSignlnDevice rou tine, 207 
SPBSignOutDevice routine, 207 
SPBStopRecording routine, 206 
SPBVersion system call, 202 
Special menu, 20 
Splash screen, 48 
SQL (Structured Query Language) 

and Data Access Language 
(DAL), 8, 151 

sResource, 326 
Standard File Package, 13, 35, 314, 

316-319 
compatibility, 319 
customizing, 89 

Standard user interface, 9 
StandardFileReply data structure, 

316, 319 
StandardGetf ile routine, 316-319 
StandardPutfile routine, 316, 

318-319 
StartSecureSession system call, 68, 

70 
Startup Items fo lder, 22, 322 
Stationery file, 31 
Stationery pad, 27 
Stop All Editions .. . command, 32, 

93 
STPreflightEvent system call, 252 
'SI R ' resource, 173 
'STR#' resource, 162, 173 
Str2Format routine, 141 
Strings 

comparing, 136-137, 140 
date and tim e, 137 
replacing, 136 

StripAddress function, 291 
StripText routine, 136, 140 
StripUpperText rou tine, 136, 140 
Stufflt, 48 
'sty!' resource, 173 
Subscribe To ... command, 32, 

87-89, 92 
Subscriber Options ... command, 89 
Subscriber Options ... dialog box, 

90, 98, 100 
Subscribers, 88, 90-92, 97- 98 
Subscribing, 88-96 
Suitcase file, 22 
suspend events, 72 
syncCmd sound command, 200 
Synthesizers, 193-195 

MACE (Macintosh Audio 
Compression and 
Expansion), 194-195 

playback, 193 
utility, 193 

SysBeep system call, 187, 190-191 
SysEnvirons system call, 51 
System 7 

aliases, 13 
AjUX, 51, 56-61 
components, 3-13 
file system, 12 
future features, 339 

Apple event object model, 341 
AppleScript, 341 
File System Manager, 340 
Layout Manager, 340 
memory protection, 341 
multimedia support, 342 
multiple address spaces, 341 
network booting, 342 
new p rin t arch itecture, 340 
object-oriented programming 

(OOP), 343 
preemptive multi tasking, 

341-342 
revised QuickDraw, 343 
revised SCSI Manager, 340 

hardware managers, 13 
high-level events, 5-6 
history, 3 

~ Index 359 

human interface guidelines, 4-5, 
29-36 

interapp lication communications, 
5-6 

international services, 7 
memory requirements, 14 
passwords and user names, 66 
processes, 11-13 
running, 14-15 
strategy behind , 1-2 

System crash, 22 
System file, 137 
System Folder, 4, 13, 21-23, 216, 

228, 322-323 
Apple Menu Items folder, 18, 22, 

322 
changes, 308 
Communications Folder, 22, 323 
Control Pa nels folder, 22, 322 
Desktop Folder, 22, 322 
Extensions folder, 22, 322 
FontjDA Mover, 22-23 
Preferences folder, 22, 322 
Prin tMonitor Documents fo lder, 

22, 322 
Rescued Items from folder, 22, 

323 
Startup Items folder, 22, 322 
System folder, 22, 323 
Temporary Items folde r, 22, 322 
Trash folder, 22, 323 

SysTypes.r fi le, 138 

T 
Targets, 77 
'tbnd' bund le resource, 232 
'tdef' code resource, 23 1-234 
teCenter justification mode, 127 
TEContinuousStyle routine, 127 
TECustomHook routine, 126 
TEDrawHook procedure, 126 
TEEOLHook procedure, 126 
TEFeatureflag routine, 123- 124 
TEFindWord procedure, 126-127 
teFiushDefault justification mode, 

127 
teFiushLeft justification mode, 127 
teFiush Right justification mode, 127 
TEGetPoint routine, 127 
TEHitTestHook procedure, 126 



360 ..,. Index 

TEidle system call, 125 
TEKey routine, 125, 127 
Telecommunications. See 

communications 
TempDisposeHandle system call, 

287-288 
TempFreeMem system call, 

287-288 
TempHLock system call, 288 
TempHUnlock system call, 288 
TempMaxMem system call, 

287-288 
TempNewHandle system call, 

287-288 
Temporary files, 22 
Temporary Items folder, 22, 

322-323 
Temporary memory, 11, 286- 288 

compatibility, 287 
system calls, 287-288 

TENumStyles routine, 127 
TermDataBlock system call, 227 
Terminal emulation, 224-230, 232 

tools, 9 
Terminal Manager, 9, 210, 213, 

217, 227 
handing events with routines, 

230 
interfacing with scripting 

language, 228 
international support, 23 1 
programming, 224-234 
routines, 228-231 
special keys, 230 
window, 227 

Terminal records, 211, 227-228 
Terminal tools, 224, 226- 228, 

230- 234 
TESetJust routine, 127 
TESetSty 1e routine, 12 7 
TestDeviceAttribute routine, 276 
TEWidthHook procedure, 126 
Text 

attributes onjoff, 127 
buffering, 125-126 
drawing line components, 126 
justifying, 127 
measuring line portions, 126 
mixed-direction, 7 
word breaks, 126 

TEXT file format, 94 
Text layout services, 340 
'TEXT' resource, 173 
TextEdit, 121-128 

controlling/checking features, 
124 

cursor movement, 124 
customizing, 126 
double-byte characters, 124 
hook procedures, 126- 127 
internationalization, 7 
outline highlighting, 124 
Script Manager compatibility, 

123 
scripts and primary line 

direction, 123- 124 
synchroniz ing keyboard and 

display, 124 
text buffering, 125- 126 
two-byte characters, 7 

Time 
formats, 139 
measuring intervals, 305-306 

Time Manager, 12, 295, 302-306 
accuracy, 303 
compatibility, 304 
fixed-frequency scheduling, 304 
measuring time intervals, 

305-306 
task records, 303 
tasks, 304- 305 

Time-related services, 303 
Timekeeping, 12 
'tloc' code resource, 232 
TMActivate routine, 230 
TMAddSearch routine, 229 
TMChoose routine, 228 
TMClear routine, 229 
TMClearSearch routine, 229 
TMCiick routine, 230 
tmCiickMsg message, 234 
TMCountTermKeys routine, 230 
TMDefault routine, 228-229, 231 
TMDispose routine, 229 
tmDisposeMsg message, 232 
TMDoTermKey routine, 230 
tmDoTermKeyMsg message, 234 
TMEnglishTolntl routine, 231 
TMEvent routine, 230 
TMGetConfig routine, 228 

TMGetCursor routine, 229 
TMGetlndTermKey routine, 230 
tmGetlndTermKeyMsg message, 

234 
TMGetProciD system calL 228 
TMGetRefCon routine, 231 
TMGetSelect routine, 229 
TMGetTermEnvirons routine, 230 
TMGetTMVersion routine, 213 
TMGetTooiName routine, 231 
TMGetUserData routine, 231 
TMGetVersion routine, 231 
TMidle system call, 229 
tmlnitMsg message, 232 
TMintiToEnglish routine, 231 
TMKey routine, 230 
tmKeyMsg message, 234 
TMMenu routine, 230 
TMNew routine, 228 
TMRemoveSearch routin e, 229 
TMReset routine, 229 
TMResume routine, 230 
TMScroll system call, 229 
TMSetConfig routine, 228 
TMSetRefCon routine, 231 
TMSetSelect routine, 229 
TMSetUserData routine, 231 
TMStream routine, 229 
tmStreamMsg message, 232-233 
TMUpdate routine, 230 
TMValidate system call, 231 
Token Ring, 247 
TokenTalk, 247 
Tolerant colors, 270 
Toolbox Event Manager, 72 
Tools 

Correction, 22 
DeRez, 39 
Emulation, 22 
file transfer, 9, 22 
Rez MPW, 39-40 
ScriptCheck MPW, 40 
software installation, 48-49 
terminal emulation, 9 

totalLoadCmd sound command, 
200-201 

Transactions, 155 
Translate24To32 system call, 

291-292 
Transliterate routine, 140 



Trash can, 27, 35 
Trash folder, 22, 35. 323 
True Type. 5, 32, 60, I 03 

B-splines. I I 0 
characters, 110- 111 
contours, 11 0 
Font Manager. 116- 11 7 
fonts, 6- 7, 108-116 
globa l graphics state, 114 
instructions. Ill 
in terpreter, 114 
loc,ll graphics state, 114 
outlines converted to bitmaps. 

114- 116 
scaler, 114 
scan converter. 11 4 

TruncText routine, 136 
'tscr' code resource, 232 
'tset' code resource, 232 
Tuples, 242 
'tvn l' code resource, 23 1 
Two-byte characters, 7 

u 
l.J ncund itional sleep demands, 328 
UnholdMemory system ca ll, 285 
UnRcgistcrSection routine, 96 
Update Alias system ca ll, 3 16 
UpdateGWorld routine, 274- 275 
UpperTcxt routine, 140 
User interface, 13 
Users and Groups con trol panel, 

25. 66. 258 

Utility syn thesizers, 193 

v 
Vertical Retrace Ma nager, 303 
View menu, 19-20 
ViewEdi t tool, 334 
Virtual memory lVM), 11, 27- 28, 

60. 28 1- 286 
compatibilit y. 283- 284 
controlling, 284-285 
double page fault, 285 
hard disk space, 15 
locality of reference, 285-286 
pages. 284- 285 
requirements, 14- 15 

VTI02 terminal emulation tool. 
225- 226 

w 
waitCmd sound command. 200 
WaitNcxtCall routine, 306 
WaitNcxtEvcnt system call, 59. 60, 

72-73. 286- 287. 296-298, 300 
WakeUpProcess system call, 300 
Wave tables, 188. 199 
waveTableCmd sound command, 

199 
WDEF (window definition 

procedures), 290-29 1 
Windo w Manager, 72 
Window objects help messages, 

177- 178 

.,... Index 361 

Windows 
cache region, 22 7 
complex, 334 
help messages, 176-177 
help resources, 181 - 182 
human interface design, 33 
mova ble object help resources, 

183 
palettes, 272-273 
positioning, 33, 72 
sizing, 33 
terminal emulation region, 227 
zoom box. 33 

WordBreak procedure. 127 
Worldwide Developer's Conference. 

3 
Write system ca ll, 286 
WriteEdition routine, 97 
WritePa rtiaiResource rou tine, 313 
'wst r' resources, 162 

X 
XMODEM file transfer tool. 235 
XPP driver, 247, 250 

z 
ZhongwenTalk script system, 128 
ZIP (Zone Informat ion Protocol). 

249- 250 
Zoom box. 33 



Other Books Available in the Macintosh Inside Out series 

~ Programming with MacApp® 
David A. Wilson, LarnJ S. Rosenstein, Dan Shafer 
Here is the information you need to understand and use the power of MacApp, Apple Computer, Inc.'s 
official development environment for the Macintosh. The book discusses object-oriented concepts, 
using MPW with MacApp, the MacApp class library, and creating the Macintosh user interface. All 
examples are in Apple's Object Pascal language. 
576 pages, paperback 
$24.95, book alone, order number 09784 
$34.95, book/ disk, order number 55062 

~ C++ Programming with MacApp® 
David A. Wilson, LarnJ S. Rosenstein, Dan Sltafer 
In this book you will find information on using MacApp with C++, the up-and-coming language for 
Macintosh development. The book covers object-oriented techniques, MPW, and the MacApp class 
libraries. All program examples are in C++. 
600 pages, paperback 
$24.95, book alone, order number 57020 
$34.95, book/disk, order number 57021 

~ Elements of C++ Macintosh® Programming 
Dan Weston 
Macintosh programmers will learn just what they need to take the step from C to C++ programming, 
the future of Macintosh development. The book covers the basics and then teaches how to design 
practical programs with C++. 
464 pages, paperback 
$22.95, order number 55025 

~ Programmer's Guide to MPW®, Volume I 
Exploring the Macintosh® Programmer's Workshop 
Mark Andrews 
Learn the secrets to unlocking the power of MPW, Apple's official integrated software development 
system for the Macintosh. The book begins with fundamental skills and concepts and then progresses 
to more advanced examples culminating in a fully functiona l application. 
608 pages, paperback 
$26.95, order number 57011 

~ ResEdWM Complete 
Peter Alley and Caro lyn Strange 
This book/disk package contains the actual ResEdit software along with a complete guide to using it. 
The book shows you how to customize your desktop and then moves on to cover more advanced 
topics such as creating standard resources, designing templates, and writing your own resource editor. 
576 pages, paperback 
$29.95 book/ disk, order number 55075 

~ The Complete Book of HyperTalk® 2 
Dan Shafer 
This hands-on guide covers HyperTalk 2, with its greatly expanded features and capabilities. It offers 
practical information on commands, operators, and functions as well as deta iled explanations of 
XCMDs, dialog boxes, menus, communications, and stack design. You'll also find plenty of tips and 
dozens of ready-to-use scripts. 
480 pages, paperback 
$24.95, order number 57082 



._ Programming the LaserWriter® 
David A. Holzgang 
This practical reference shows how to take advantage of all of the LaserWriter's features and capabil
ities. Offering numerous useful tips, techniques, and examples, the book takes programmers through 
the details of accessing the LaserWriter directly and thus bypassing the Apple Printing Manager and 
its limitations. 
464 pages, paperback 
$24.95, order number 57068 

._ Debugging Macintosh® Software with MacsBug® 
Includes MacsBug 6.2 
Konstantitr Otlnner and Jim Straus 
This book/disk package is a complete guide to using MacsBug. It includes the actual MacsBug soft
ware as well as a hands-on tutorial on using it to debug Macintosh programs. Debugging tips, tricks, 
and advice appear throughout the book, in addition to numerous examples. 
576 pages, paperback 
$34.95 book/disk, order number 57049 

Order Number Quantity Price Total 
Name 

-- -- -- Address 

-- -- --

-- -- -- City /Sta te/Zip 

-- -- -- Signature (required) 

TOTAL ORDER - Visa - MasterCard - Am Ex 
---

Shipping and state sales tax will be added 
Account# Exp. Date 

automatically. Addison-Wesley Publishing Company 
Credit card orders only please. Order D~:>artment 

Route 12 
Offer good in USA only. Prices and avail- Reading, MA 01867 
ability subject to change without notice. To order by phone, call (800) 477-2226 



DATE DUE 

DEMC038-297 

SCI QA 

System 7 revea l ed 



.. ·' .. 

. .. 



System 7 Revealed 
ANTHONY MEADOW 

"This book is a great first step in tackling 7.0 development." 
-Steve Golclbern, Product Manaecr. System 7.0, Apple Computer, Inc. 

"A must for anyone serious about development on the Macintosh." 
-Art Schumer, Group Manaeer '![Macintosh TechnolofJY. Micros# 

System 7 is the most significant anJ 
exciting development in Macintosh~ 
~)'stem software since the Macintosh was 
introduced. It incorporates such 
impressive advances as virtual memory, 
inter-application communication, and an 
enhanced Hnder"'. Every Macintosh 
programmer will want to explore and take 
auvantage of System 7's powerful new 
technology. 

System 7 Revealed provides you with a 
first look at all the features and newest 
capabilities of System 7. The book 
describes each feature and function in 
detail and then shows you how to use the 
ne\.v system calls available for application 
development. Topics covered include the 
Memory and Sound Managers, processes, 
fonts anclli·ueType"', Publish and 
Subscribe, File Sharing, and changes to 
the file system. 

You will also learn how to: 
• Reduce the complexity of your 

applications with Apple events 
and other high-level events 

• Communicate \'\riLh other computers 
using the Communications Toolbox, 
Data Access Language, and Apple Data 
Stream Protocol 

Cover design by Ronn Campisi 

Addison-Wesley Publishing Company, Inc. 

• usc the Help Manager to prO\ride 
on-line help to your users 

• Internationalize your software to take 
advantage of the rapidly growing global 
demand for Macintosh software 

and much more. 

This thorough coverage of vital System 7 
concepts and features makes System 7 
Revealed an essential reference for all 
Macintosh programmers. 

Anthony Meadow is cofounder 
and president of both Bear River 
Associates, Inc., a leading 
Macintosh software development 
compan)~ and Bear River 
Institute, a premier Macintosh 
technical training f'trm. He is also the 
president of the MacApp~ Developers 
Association, an international organization 
for commercial and in-house developers 
using Apple's object-oriented application 
framework. 

52295> 

9 780201 550405 

ISBN 0-201- 55040-7 
55040 


